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Abstract

This paper presents an Adaptive Tabu Search algorithm (denoted by ATS) for solving the problem of curriculum-based
course timetabling. The proposed algorithm follows a general framework composed of three phases: initialization,
intensification and diversification. The initialization phase is primarily aimed to construct a feasible initial timetable
using a fast greedy heuristic. When a feasible initial assignment is reached, an adaptively combined intensification
(Tabu Search) and diversification (Perturbation Operator from Iterated Local Search) phase is used in order to
reduce the number of soft constraint violations without breaking hard constraints any more. The proposed ATS
algorithm integrated several distinguished features including an original double Kempe chains neighborhood structure,
a penalty-guided perturbation approach and a mechanism for dynamically integrating tabu search with perturbation.
Computational results indicate that better solutions can be found compared with Tabu Search and Iterated Local
Search alone, as well as another reference algorithm. This paper also shows an analysis to explain which are the

essential ingredients of the proposed ATS algorithm.
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1. Introduction

As aproblem that most universities must face year
after year, timetabling has become an area of in-
creasing interest in the community of both research
and practice in recent decades. In essence, it con-
sists of assigning a number of events, each with a
number of features, to a limited number of times-
lots and rooms subject to certain (hard and soft)
constraints. Typical cases in this area include ed-
ucational timetabling [12], sport timetabling [32],
employee timetabling [13], transport timetabling [3]
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(ITC-2007).
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and so on. In this paper, we consider one of the prob-
lems in the category of educational timetabling.
Educational timetabling problems can be gener-
ally classified into two categories: exam timetabling
and course timetabling. The later can be further
divided into two sub-categories: post enrollment-
based course timetabling and curriculum-based
course timetabling (CB-CTT). The main difference
is that for post enrollment timetabling, conflicts
between courses are set according to the students’
enrollment data, whereas the curriculum-based
course timetable is scheduled on the basis of the
curricula published by the university. In this paper,
our study is focused on the curriculum-based course
timetabling, the formulation of which was recently
proposed as the third track of the Second Inter-
national Timetabling Competition (ITC-2007) [?].
This competition is aimed to close the gap between
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research and practice within the area of educational
timetabling [23].

For university curriculum-based course timetabling,
a set of lectures must be assigned into timeslots
and rooms subject to a given set of constraints.
Two types of constraints can be defined in every
timetabling problem: First, the constraints which
must be strictly satisfied under any circumstances
are normally called hard constraints. Second, the
constraints which are not necessarily satisfied but
whose violations should be desirably minimized are
usually called soft constraints. An assignment that
satisfies all the hard constraints is called a feasible
timetable. The objective of this problem is to min-
imize the number of soft constraint violations in a
feasible timetable.

The general university timetabling problem is
known to be difficult and has been proved to be NP-
hard [14,17]. In this context, exact solutions would
be only possible for problems of limited sizes. In-
stead, heuristic algorithms based on metaheuristics
have shown to be a highly effective approach to this
kind of problems. Examples of these algorithms in-
clude graph coloring heuristics [5,7,9], tabu search
[26,30,36], simulated annealing [2,34], evolution-
ary algorithms [6,15,29], constraint based approach
[16,24], GRASP [10,33], case-based reasoning [4]
and so on. Interested readers are referred to [8,21,31]
for a comprehensive survey of the automated ap-
proaches for university timetabling presented in
recent years.

The objective of this paper is two-fold: a three-
phases solution algorithm for solving the CB-CTT
problem was presented and some essential ingre-
dients of the proposed algorithm were carefully
investigated. The proposed ATS algorithm follows
a general framework composed of three phases: ini-
tialization, intensification and diversification. The
initialization phase is primarily aimed to construct a
feasible initial timetable using a fast greedy heuris-
tic. When a feasible initial assignment is reached,
the intensification and diversification phases are
adaptively combined in order to reduce the number
of soft constraint violations without breaking hard
constraints any more. The performance of the pro-
posed hybrid algorithm was assessed on a set of 4
instances used in the literature and a set of 14 pub-
lic competition instances from the ongoing Second
International Timetabling Competition, showing
very competitive results.

As the second objective of this paper, we care-
fully investigated several important features of the

proposed algorithm. The analysis shed light on why
some ingredients of our ATS algorithm are essential
and how they lead to the efficiency of our ATS algo-
rithm.

The rest of this paper is organized as follows. Sec-
tion 2 describes the mathematical formulation of the
CB-CTT problem. Section 3 introduces the main
idea and the general framework of the ATS algo-
rithm. Following that, Section 4 presents the initial
solution generator based on two greedy heuristics.
Section 5 describes in details the basic search engine
of our ATS algorithm—Tabu Search. Section 6 de-
picts the penalty-guided perturbation operator and
explains how TS and perturbation is dynamically
combined. In Section 7 the computational results of
the algorithm are presented and discussed. Section
8 presents investigations on several essential parts of
the proposed ATS algorithm. Eventually in Section
9 we draw some conclusions.

2. Curriculum-Based Course Timetabling
2.1. Problem Description

The CB-CTT problem consists of scheduling lec-
tures of a set of courses into a weekly timetable,
where each lecture of a course must be assigned a
period and a room in accordance with a given set
of constraints. A feasible timetable is one in which
all lectures have been scheduled at a timeslot and a
room, so that the hard constraints H;~H, are satis-
fied. In addition, a feasible timetable satisfying the
four hard constraints incurs a penalty cost for the
violations of the four soft constraints S;~S4. Then,
the objective of the CB-CTT problem is to minimize
the number of soft constraint violations in a feasi-
ble solution. The four hard constraints and four soft
constraints are:

e H;. Lectures: All lectures of a course must be
scheduled to a distinct period and a room.

e Hs. Room Occupancy: Any two lectures cannot
be assigned in the same period and the same room.

e Hj. Conflicts: Lectures of courses in the same
curriculum or taught by the same teacher cannot
be scheduled in the same period, i.e., any period
cannot have an overlapping of students or teach-
ers.

e H,. Availability: If the teacher of a course is not
available at a given period, then no lectures of the
course can be assigned to that period.

e S;: Room Capacity: For each lecture, the num-
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ber of students attending the course should not

be greater than the capacity of the room hosting

the lecture.

e So: Room Stability: All lectures of a course
should be scheduled at the same room. If this is
impossible, the number of occupied rooms should
be as few as possible.

e S3: Minimum Working Days: The lectures of a
course should be spread into the given minimum
number of days.

e S;: Curriculum Compactness: For a given cur-
riculum a violation is counted if there is one lec-
ture not adjacent to any other lecture belonging to
the same curriculum within the same day, which
means the agenda of students should be as com-
pact as possible.

Given the above description of this problem and
in order to avoid any confusion, we present below a
first mathematical formulation of the problem which
is missing in the literature.

2.2. Problem Formulation

The CB-CTT problem consists of a set of n
courses C' = {c1,¢2,...,¢n} to be scheduled in a
set of p periods T' = {t1,t2,...,tp} and a set of m
rooms R = {ry,72,...,7rm}. Each course ¢; is com-
posed of [; same lectures to be scheduled. Without
leading to confusion, we do not distinguish between
lecture and course in the following context. A pe-
riod is a pair composed of a day and a timeslot and
p periods are distributed in d week days and h daily
timeslots, i.e., p = d % h. In addition, there are a
set of s curricula CR = {cry,crq,...,crs} where
each curriculum cry, is a group of courses that share
common students.

For the solution representation, we choose a di-
rect solution representation to make things as sim-
ple as possible. A candidate solution consists of pxm
matrix X where z; ; corresponds to the course la-
bel assigned at period ¢; and room r;. If there is no
course assigned at period t; and room r;, then z; ;
takes the value " null”. With this representation we
ensure that there will be no more than one course
assigned to each room in any period, meaning that
the second hard constraint Hy will always be satis-
fied. For courses, rooms, curricula and solution rep-
resentation X, a number of constant symbols and
variable definitions are presented in tables 1 and 2.

Given these notations, we can describe the CB-
CTT problem in a formal way for a candidate solu-

Table 1
Table of symbols

Symbols  Description

n the total number of courses

m the total number of rooms

d the number of working days per week

h the number of timeslots per working day

p the total number of periods, p =d * h

s the total number of curricula

C the set of all courses, |C| =n

R the set of all rooms, |R| =m

T the set of all periods, |T|=p

CR the set of all curricula, |[CR| = s

l; the total number of lectures of course c;

l the total number of lectures, | = Z;l l;

std; the number of students attending course c;

te; the label of the teacher instructing course c¢;

md; the number of minimum working days of course c¢;

cap; the room capacity of room 7;

cr the kth curriculum including a set of courses

uav; whether course c¢; is unavailable at period t;.
uav; ; = 1 if it is unavailable, uav; ; = 0 otherwise

Table 2

Table of variables

Variables Description

Tij the label of the course assigned at period ¢; and
room 7;

nr; (X) the number of rooms occupied by course c; for a
candidate solution X

nd; (X) the number of working days that course c; takes
place at for a candidate solution X

appy,;(X) whether curriculum cry appears at period t; for

a candidate solution X, appy ;(X) = 1 when any
course in curriculum cry, is scheduled at period t;,
appy,;(X) = 0 otherwise.

tion X. The four hard constraints and the penalty
cost for the four soft constraints are as follows:
e H;. Lectures: V¢, € C,

Z slk(xm») = lk

%]
where

1, if ;. ; = cp;
sle(wij) =4 7 7
0, otherwise.

e Hy;. Room Occupancy: this hard constraint is
automatically satisfied in our solution representa-
tion.

e H;. Conflicts: Vz; j, ;1 € X, 2
Cu,

= Cy, Tjp =

(Verg,cu & crq V ey & crg) A (tey # tey)
e Hy. Availability: Vz; ; € X, z; ; = cx,

uavg,; =0
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S1: Room Capacity: Vz; ; € X, z; ; = cg,

aq - (stdy — capj), if stdy, > cap;;
filziz) =

0, otherwise.
e S5: Room Stability: Ve, € C,|
fa(ci) = a2 - (nri(X) — 1)
e S3: Minimum Working Days: Vc¢; € C,

a3 - (WLdZ — ndl(X)), if ndl(X) < md;;
falei) =

0, otherwise.

e S54: Curriculum Compactness: Vz;; € X,
Ti,5 = Ck,

fa(wij) = ayg- Z C_CTk,q - 150¢,4(X)

crq€CR
where
1, if cx € cry;
CCTyq =
0, otherwise.
1, if (¢%h =1V appq,i—1(X) =0)
i504i(X) = ¢ Ai%h =0V appgi+1(X) = 0);

0, otherwise.

One observes that in the S4 soft constraint func-
tion, the calculation is only limited within the same
day. is04,;(X) = 1 means that curriculum cr, in the
[i/h]th day is isolated, i.e., there is no any course
in the curriculum cry scheduled adjacent (before or
after) to the timeslot :%h in the [i/h]th day. More
specifically, curriculum cr, does not appear before
(after) period ¢; means that ¢; is the first (last) times-
lot of a working day or cr, does not appear at t;_1
(tit1)-

Note that a1, as, ag and a4 are the penalties
associated to each of the soft constraints. In this
problem formulation, they are set as:

ar=1l,as=1,a3 =54 =2

It is obvious that the soft constraints S; and So
are uniquely room-related costs while S3 and S4 are
period-related ones. This feature allows us to deal
with the incremental cost of neighborhood moves in
a more flexible way (as described in section 5.3 and
8.2).

With the above formulation, we can then calcu-
late the total soft penalty cost for a given candidate

feasible solution X according to the cost function f
defined in formula (1). The goal is then to find a fea-
sible solution X * such that f(X*) < f(X) for all X
in the feasible search space.

S A+ fale)

f(X) _ T;,;€X c;eC (1)
+ > fale)+ Y falwiy)
c;eC T ;€X

3. General Solution Framework

In this paper, we present a hybrid metaheuristic
algorithm (Adaptive Tabu Search, denoted by ATS)
for solving the curriculum-based course timetabling.
The proposed algorithm follows a general frame-
work composed of three phases: initialization, in-
tensification and diversification. The initialization
phase is primarily aimed to construct a feasible ini-
tial timetable using a fast greedy heuristic. When a
feasible initial assignment is reached, the adaptively
combined intensification and diversification phase
is used in order to reduce the number of soft con-
straint violations without breaking hard constraints
any more. The intensification phase employs a Tabu
Search algorithm [20] while the diversification phase
is based on a penalty-guided perturbation operator
borrowed from Iterated Local Search [22].

In the initialization phase, a feasible solution is
constructed from empty using a greedy heuristic. At
each time, one appropriate lecture of a course is se-
lected and assigned to a period and a room. For this
purpose, we proposed two greedy heuristic rules for
course selection and period-room assignment respec-
tively. Notice that soft constraints are also consid-
ered in this procedure when deciding a period-room
pair for a selected lecture.

For the intensification phase, the basic search en-
gine is based on Tabu Search (TS) [20], in which we
introduce two distinct neighborhood structures: one
swaps two lectures or moves one lecture to a free
position, the other is defined by single and double
Kempe chain interchanges concerning two distinct
periods. Our TS algorithm is implemented by com-
bining these two neighborhoods in a token-ring way
[19].

When the TS cannot improve the solution qual-
ity any more, a diversification phase base on Iter-
ated Local Search [22] is triggered to help escape
from local optimum solution. In order to not only
inherit the essential parts of the current local opti-
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mum solution obtained but also move toward new
promising regions of the search space, we propose
a randomized penalty-guided perturbation operator
to destruct the reached local optimum. Thus, a new
TS phase starts then with the perturbed solution.

In order to provide the search with a continu-
ous tradeoff between intensification and diversifica-
tion, a mechanism is proposed to adaptively adjust
the strength of TS and perturbation, which consti-
tutes the main skeleton of our Adaptive Tabu Search
(ATS) algorithm.

4. Initial Solution

The first phase of our algorithm aims to gen-
erate a feasible initial solution. This is achieved
by a sequential greedy heuristic starting from
an empty timetable, where assignments are con-
structed by inserting one appropriate lecture into
the the timetable at each time. At each step, two
distinct operations are carried out: one is to select
a still unassigned lecture of a course, the other is
to determine a period-room pair for this lecture.
To this end, two heuristic rules are utilized, where
lectures are selected and scheduled in a dynamic
way primarily based on an idea of least period avail-
ability. It should be mentioned that, in our initial
solution generator, we also take into account the
soft constraints by introducing a weighted heuristic
function involving all hard and soft constraint fac-
tors. Before describing the greedy heuristics, it is
necessary to give some basic definitions as follows.

Definition 1. feasible timetable: a feasible
timetable X is a complete timetable assignment
which satisfies all the four hard constraints H; ~Hy.

Definition 2. partial feasible timetable: A
partial timetable, denoted by X, is such that only a
part of the lectures are scheduled to the timetable
without violating any hard constraint.

Definition 3. feasible lecture insertion: Given
a partial feasible timetable, a feasible lecture inser-
tion consists of choosing one unassigned lecture of
course ¢; and scheduling it to a period ¢; and a room
r. such that no hard constraint is violated, denoted
by < ¢, tj, i >.

Definition 4. available period: Given a partial
feasible timetable X, period ¢; is available for course
c; means that there exists at least one room at pe-
riod ¢; such that course ¢; can be assigned without
violating any hard constraint.

In order to describe our algorithm more clearly,

the following notations are presented under a partial

feasible timetable X:

e apd;(X): the total number of available periods for
course ¢; under X ;

e aps;(X): the total number of available positions
(period-room pairs) for course ¢; under X ;

e nl;(X): the number of unassigned lectures of
course ¢; under X ;

o uac; j(X): the total number of lectures of unfin-
ished courses who become unavailable at period
t; after assigning one lecture of course ¢; at period
t;.

Under any partial feasible timetable X , we at-
tempt to choose one lecture of a course from all the
unfinished courses, i.e. having unscheduled lectures,
according to the following heuristic order (HR1):

(i) choose the course with the smallest value of

apd;(X)/\/nli(X);
(ii) if there are multiple courses with the same
smallest values, then, choose the course with

the smallest value of aps;(X)1/nl;(X);

(iii) if there are still more than one course with the
same smallest values, then choose the course
with the maximum number of conf;, where
con f; is the number of courses that share com-
mon students or teacher with course ¢;. Ties
are broken by following the label order.

In this heuristic, the courses with a small num-
ber of available periods and a large number of
unassigned lectures have priority. The rationale for
this heuristic is the following. On the one hand,
one course which has a small number of available
periods naturally has fewer choices to be assigned
than courses having many available periods. On the
other hand, it is reasonable to give priority to the
course with a large number of left lectures. When
this heuristic rule cannot distinguish two or more
courses, the number of available positions (period-
room pairs) and the number of conflicting courses
are taken into account to distinguish them.

Based on a dynamic selection procedure, the pro-
posed course selection heuristic HR1 is similar to
(but not exactly the same as) the least Saturation
Degree first heuristic used in [5]. However, HR1 is
quite different from most of the previous fixed order
heuristics [12].

Once we have chosen one lecture of a course to
assign (suppose ¢} is chosen), we want to select a
period among all available ones that is least likely to
be used by other unfinished courses at later steps.
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To this end, we propose the following heuristic rule
(HR2) for the period-room pair assignment: for
each available period-room pair (¢; and ry), we try
to choose the pair with the smallest value of the
following weighted function:

9(j. k) = k- uaci j(X) + ka - Afo(i*, 5, k) (2)

where A fs(i*, j, k) is the soft constraint penalties in-
curred by the feasible lecture insertion < ¢, t;, 7, >;
k1 and ko are the coefficients related to hard and
soft constraints, respectively. In practice, we have
found that the following parameter values work well
over a large class of instances: k1 = 1.0, k2 = 0.5.
In this function, uac;- ; denotes the total number of
lectures of unfinished courses that become unavail-
able at period ¢; after assigning one lecture of course
c; at period t;, implying the influence of the fea-
sible lecture insertion < cJ,t;,7; > to the period
availability of other unfinished courses. This means
that there are uac;- ; lectures of unfinished courses
that originally can be assigned at period t;, but will
become impossible to assign if the feasible lecture
insertion < cf,t;,rp > is executed. Therefore, fea-
sible lecture insertions with small values of uac;- ;
are highly favored.

Given these definitions, notations and heuristic
rules, our initial generation algorithm is described
in algorithm 1.

Algorithm 1 Pseudo-code of the initial solution
heuristic
1: Input: I, an instance of CB-CTT
2: Output: X, a feasible solution or a partial fea-
sible solution
3: set X = null and initialize the set LC' of all
unassigned lectures
4: repeat
5. choose one unassigned lecture of a course (¢;)
from LC according to HR1
6:  assign the lecture to a period-room pair (¢; —
7)) based on HR2
7. implement the feasible lecture insertion <
ci,tj, 7 > and update X
8:  remove one lecture of course ¢; from LC
9: until (LC is empty or no any feasible lecture
insertion is available)

In our initial solution generator, we dynamically
determine the order of the lecture to be assigned ac-
cording to the principle of least period availability,
rather than using a fixed order as previous initial so-
lution heuristics of the literature [12]. Under any fea-

sible partial timetable with some lectures assigned,
we use a heuristic function to examine every period-
room pair by calculating its goodness. Among all
possible period-room pairs, we select the lecture in-
sertion with the smallest value in equation (2), in
which the effectiveness of the proposed heuristic al-
lows us to take into account the soft constraints as
well. After assigning one lecture, the current partial
feasible timetable is updated and the values of all
possible lecture insertions are recalculated for all the
unassigned lectures. Such a process continues until
all the lectures are successfully assigned or the num-
ber of possible lecture insertions becomes zero.

5. Tabu Search Algorithm

In this section, we focus on the basic search en-
gine of our ATS algorithm—Tabu Search. As a well-
known metaheuritic that has proven to be successful
in solving various combinatorial optimization prob-
lems [20], Tabu Search explores the search space by
repeatedly replacing the current solution with a non-
recently visited neighboring solution even if the later
is worse than the current solution. It is based on the
belief that intelligent searching should be systemati-
cally based on adaptive memory and learning. Com-
paring with the standard local search, T'S introduces
the notion of tabu list to forbid the previously vis-
ited moves in order to avoid possible cycling and to
allow the search to go beyond local optima.

Our TS procedure exploits two neighborhoods
(denoted by N7 and Na, see below) in a token-ring
way [18]. More precisely, we start the TS procedure
with one neighborhood. When the search ends with
its best local optimum, we restart TS from this
local optimum, but with the other neighborhood.
This process is repeated until no improvement is
possible and we say a TS phase is achieved. In our
case, the TS procedure begins from the basic neigh-
borhood N; and then the advanced neighborhood
NQS N1—>N2—)N1—>N2...

5.1. Search Space and Evaluation Function

Once a feasible timetable that satisfies all the hard
constraints is reached, our intensification phase (TS
algorithm) is aimed to optimize the soft constraint
cost function without breaking hard constraints any
more (formula (1)). Therefore, the search space of
our TS algorithm is limited to the feasible timeta-
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bles. The evaluation function is just the soft con-
straint violations as defined in formula (1).

5.2. Neighborhood Structure

It is widely believed that one of the most impor-
tant features of a local search based algorithm is the
definition of its neighborhood. In a local search pro-
cedure, applying a move mv to a candidate solution
X leads to a new solution denoted by X € mv. Let
M(X) be the set of all possible moves which can
be applied to X and do not create any infeasibility,
then the neighborhood of X is defined by: N(X) =
{X @ mvmv € M(X)}. For the CB-CTT problem,
we use two distinct moves denoted by SimpleSwap
and KempeSwap. Respectively, two neighborhoods
denoted by N7 and N are defined as follows, where
only the moves producing those neighbors that do
not incur any violation of the hard constraints are
accepted.

Basic Neighborhood N;: N; is composed of
all feasible moves of SimpleSwap. A SimpleSwap
move consists in exchanging the hosting periods and
rooms assigned to two lectures of different courses.
Applying the SimpleSwap move to two different
courses x; ; and xy j for the solution X consists in
assigning the value of z; ; to ;s ;» and inversely the
value of z; j» to x; ;. Note that moving one lecture
of a course to a free position is a special case of
the SimpleSwap move where one of the swapping
lectures is empty and it is also included in Vj.
Therefore, the size of neighborhood Nj is bounded
by O(l *p*m) where [ = Z?:_Ol l; because there are
[ lectures and the total number of swapping lectures
(including free positions) is bounded by O(p * m).

Advanced Neighborhood N»: N5 is composed
of all feasible moves of KempeSwap. A KempeSwap
move is defined by interchanging two Kempe chains.
If we focus only on courses and conflicts, each prob-
lem instance can be looked as a graph G where nodes
are courses and edges connect courses with students
or teacher in common. In a feasible timetable, a
Kempe chain is the set of nodes that form a con-
nected component in the subgraph of GG induced by
the nodes that belong to two periods. A KempeSwap
produces a new feasible assignment by swapping the
period labels assigned to the courses belonging to
two specified Kempe chains.

Formally, let K7 and K5 be two Kempe chains in
the subgraph with respect to two periods ¢; and ¢;,
a KempeSwap produces an assignment by replacing

t; with (tl\(Kl UKQ)) U (tj n (Kl UKQ)) and t; with
(fj\(Kl U KQ)) U (ti N (Kl U KQ)) Note that in the
definition of Ny at least three courses are involved,
ie., |K1| + |K2| > 3. For instance, figure 1 depicts
a subgraph deduced by two periods t; and ¢; and
there are five Kempe chains: K, = {ci1, ¢i2, ¢j1, ¢j2},
Ky, = {cis}, Ko = {cju}, Kq = {ci3,¢i6,¢j3} and
K. = {cia,¢j5,cjo . In this example, each room at
periods t; and t; has one lecture. If we swap two
Kempe chains K; and K., a KempeSwap produces
an assignment by moving {c¢;3, cia, cig} to t; and
{ng, Cj5, Cjﬁ} to ti.

Note that in our KempeSwap, one of the swap-
ping Kempe chains can be empty, i.e., we add a
new empty Kempe chain Ky = @. In this case,
the move of KempeSwap degenerates into a single
Kempe chain interchange. Formally, it means replac-
ing t; with (tl\K) U (tj n K) and t; with (tJ\K) U
(t;NK) where K is the non-empty Kempe chain [12].
For example, in figure 1, if we exchange the courses
of the Kempe chain K, it produces an assignment
by moving {Cﬂ,CiQ} to tj and {le,CjQ} to ti. It is
noteworthy to notice that our double Kempe chains
interchange can be considered as a generalization of
the single Kempe chain interchange known in the
literature [10,12,15,24,34].

Once courses are scheduled to periods, the room
assignment can be done by solving a bipartite
matching problem [27], where both heuristic and
exact algorithms can be employed. In this paper,
we implement an exact algorithm-the augmenting
path algorithm introduced in [28], which runs in
O(JV]|C]). In consideration of the high computa-
tional effort of this matching algorithm, we should
try to use it as few as possible. For this purpose, we
propose a special technique to estimate the good-
ness of a move without actually calling this match-
ing algorithm, as shown in subsections 5.3 and 8.2.

Since KempeSwap can be considered as an ex-

)

-“‘9@/@999
~®© ©® ® ® ® ©

Fig. 1. Kempe chain illustrations
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tended version of swapping two lectures (and af-
terward several other related lectures in the speci-
fied Kempe chain(s) being moved), the size of N
is bounded by O(I = (I + p)), where the size of dou-
ble Kempe chains interchange is bounded by O(I 1)
and the size of single Kempe chain interchange is
bounded by O(I * p).

In order to maintain the feasibility of the Kempe
chain neighborhood solution, another important
factor also needs to be considered, i.e., the num-
ber of courses in each period (after Kempe chain
exchange) cannot exceed the number of avail-
able rooms. For example, in figure 1, with respect
to the single Kempe chain interchange, only one
feasible move can be produced by interchanging
courses in K,, while other four single Kempe chain
interchanges (K3, K., K4 and K.) cannot pro-
duce feasible solutions since these moves break the
above-mentioned violation and thus are forbidden.
In fact, this property largely restricts the number
of acceptable candidate solutions for single Kempe
chain interchanges. We call this restriction room
allocation violation.

However, as soon as the double Kempe chains in-
terchange is taken into account, the room allocation
wiolation is relaxed such that a large number of fea-
sible moves can be generated. For instance, in figure
1, three double Kempe chains interchanges can be
produced by swapping K and K., K. and K4 as
well as K4 and K,.. In a word, the introduction of
the double Kempe chains interchanges allows us to
consider more neighborhood moves in a flexible way
than the previous single Kempe chain interchange.

It should be noted that our proposed neighbor-
hoods N7 and N> are quite different from the pre-
vious ones introduced in [11,18,19]. In their work,
two basic neighborhood moves were defined: one is
to simply change the period assigned to a lecture of
a given course, while the other is to change the room
assigned to a lecture of a given course. One observes
that these two neighborhood moves are the subset
of our basic neighborhood Nj. It should be men-
tioned that except the double Kempe chains inter-
change, other moves (one lecture move, two lectures
swap and single Kempe chain interchange) are not
completely new and have been proposed for solving
other timetabling problems in the literature in re-
cent years [12,21]. However, we will show in Section
8.4 that the proposed double Kempe chains move is
much more powerful.

5.3. Incremental Evaluation and Neighborhood
Reduction

Our basic search procedure is based on T'S, which
employs an aggressive search strategy to exploit its
neighborhood, i.e., at each iteration, all the candi-
date neighbors of the current solution are examined
and the best non-tabu one is chosen. In order to eval-
uate the neighborhood in an efficient way, we use an
incremental evaluation technique. The main idea is
to keep in a special data structure the mowve value
for each possible move of the current solution. Each
time a move is carried out, the elements of this data
structure affected by the move are updated accord-
ingly.

However, as mentioned above, the move evalua-
tion of the advanced neighborhood N3 needs much
more computational efforts than that of Ny. In or-
der to save CPU time, we attempt to use the match-
ing algorithm as few as possible. According to the
problem formulation, the soft costs can be classi-
fied into the period related and room related costs.
From the definition of Ns, it is clear that the period-
related cost Af,, can be calculated without calling
the matching algorithm and therefore it is easy to
calculate, while the calculation of the room related
cost A f, is time consuming due to the higher compu-
tational cost of the matching algorithm. In our im-
plementation, we only record and update the period-
related move values A f, for the neighborhood solu-
tions of Ny, while for the room-related move values,
a special reduction technique is employed to decide
whether to call the matching algorithm.

In fact, we use the period related sub cost Af, as
a goodness estimation of the Kempe move. Specif-
ically, if the period related cost Af, is promising
(i.e., Afp < 7, practically 7=2 would produce com-
petitive results for a large class of instances), then
we call the matching algorithm to make room allo-
cations and obtain the total incremental evaluation
cost Af. Otherwise, this neighborhood candidate
solution will be discarded. In this way, at each iter-
ation only a small subset of the promising neighbor-
hood solutions are thoroughly evaluated, thus allow-
ing us to save a considerable amount of CPU time.
It should be noted that the successful employment
of this technique must be based on the hypothesis
that the period related sub cost A f,, is proportional
to the total cost function Af (as shown in Section
8.2).
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5.4. Tabu List Management

Within TS, a tabu list is introduced to forbid the
previously visited moves in order to escape from lo-
cal optima. At each iteration, a best non-tabu move
mu is applied to the current solution X even if X' =
X @ muv does not improve the solution quality.

In our TS algorithm, when moving one lecture
from one position (period-room pair) to another
(N1), or from one period to another (Nz), this lec-
ture cannot be moved back to the original position
(N1) or period (N3) for the next tt iterations (¢t
is called tabu tenure). More precisely, in neighbor-
hood Ni, if a lecture of a course ¢; is moved from
one position (¢;,r,) to another one, then moving
any one lecture of course ¢; to the position (t;,7%)
is declared tabu. Similarly, in neighborhood Nj,
moving one lecture of course ¢; to period t; is de-
clared tabu iff any lecture of course ¢; is moved
from period ¢; to another one.

Tabu tenure tt of a course ¢; is tuned adaptively
according to the current solution quality f and the
moving frequency of lectures of course c;, denoted

by freq(c), ie.,
tt(ci) = f+ ¢ freq(c:)

where ¢ is a parameter that lies in [0, 1].

The first part of this function can be explained by
the reason that a solution with high soft cost penal-
ties should have along tabu tenure in order to escape
from the local optimum trap. On the other hand,
the second part of the function is proportional to the
moving frequency of course ¢;. The basic idea is to
penalize a move which repeats too often. The coef-
ficient ¢ is instance-dependent and is defined as the
ratio of the number of conflicting courses of ¢; over
the total number of courses. It is reasonable that a
course involved in a large number of conflicts has
more risk to be moved than a course having fewer
conflicts. This tabu tenure function is intended to
explicitly guide the search to new regions of the solu-
tion space. Notice that freq(c;) is the essential part
of the above tabu tenure function and the frequency-
based tabu tenure technique has been widely used
in previous literature, see e.g. [35].

5.5. Aspiration Criteria and Stop condition

Since attributes of a solution instead of solutions
themselves are recorded in tabu list, sometimes a
candidate solution in the tabu list would lead to a

solution better than the best found so far. In this
case an aspiration criterion is used to accept this so-
lution regardless of its tabu status. Our aspiration
criterion accepts a tabu move if it improves the cur-
rent best solution or the set of non-tabu moves is
empty in the current neighborhood.

Many stop conditions are possible for the TS al-
gorithm, such as the fixed numbers of iterations, the
maximum number of iterations without improve-
ment in cost function and the total amount of CPU
time. Since our TS is a basic search procedure and
will be adaptively integrated with perturbation op-
erators, our T'S algorithm stops when the best solu-
tion cannot be improved within a given number of
moves (denoted by 6) and we call this number the
depth of TS.

5.6. TS Algorithm Description

Given all the components of TS, the algorithm is
described in algorithm 2.

Algorithm 2 Tabu Search procedure: TS(X,0)
1: Input: Xg:a feasible initial solution
2: O:the depth of TS

: Output: Xpegs:best solution found so far

4: Xbest<_X0

5: repeat

6 )(*(—TS]\/1 (Xo,e)

7 X¥ TSy, (X*60/3)

8

9

w

if f(X*') < f(Xpest) then
: Xbest<_X*/
10: XX+
11:  end if
12: until (no improvement is obtained)

Because of the high computational effort in evalu-
ating the moves of neighborhood N, T'S uses a much
smaller depth (6/3) when Nj is used. The TS pro-
cedure described here constitutes the basic search
engine of our whole ATS algorithm, where the pa-
rameter 6§ will be dynamically tuned according to
the search history (see Section 6.2).

6. Adaptive TS: Combining TS with
Perturbation

In recent decades, TS and ILS have alone proved
their efficiency for solving a large number of con-
straint satisfaction and optimization problems
[20,22]. In this paper, we consider the possibility of
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combining these two powerful metaheuristics in an
informative way. Following the basic idea of com-
bining the advantageous features of TS and ILS
exposed in [25], we devise in this work an ATS algo-
rithm for the CB-CTT problem whose components
and mechanisms are described in the following sub-
sections.

TS can be used with both long and short com-
puting budgets. In general, long computing budgets
would lead to better results. However, if the total
computation time is limited, it would be preferred to
combine short T'S runs with some robust diversifica-
tion operators. Interestingly, Iterated Local Search
provides such diversification mechanisms to guide
the search to escape from the current local optimum
and move toward new promising regions in the so-
lution space [22].

6.1. A Penalty-Guided Perturbation Strategy

In our case, when the best solution cannot be im-
proved any more using the TS algorithm, we employ
a perturbation operator to destruct the obtained lo-
cal optimum solution. Perturbation strength is one
of the most important factors of ILS. In general, if
the perturbation is too strong, it may behave like a
random restart. On the other hand, if the perturba-
tion is too small, the search would fall back into the
local optimum just visited and the exploration of the
search space will be limited within a small region.

In order to not only inherit the essential parts
of the current local optimum solution obtained but
also move towards a new region of the search space,
we employ a penalty-guided perturbation operator
to perturb the reached local optimum solution. Our
perturbation is based on the identification of a set
of the first ¢ highly-penalized lectures and a random
selection of a given number of neighborhood moves
(in this paper, we experimentally set ¢ = 30). We
call the total number of perturbation moves pertur-
bation strength, denoted by n.

Specifically, when the current TS phase termi-
nates, all the lectures are ranked in a decreasing or-
der according to their soft penalties involved. Then,
totally 7 lectures are selected from the first ¢ highly-
penalized ones, where the lecture of rank & is selected
according to the following probability distribution:

P(k) o< k=

where ¢ is a positive real number and in this paper
we empirically set ¢ = 4.0. After that, n feasible

10

moves of SimpleSwap or KempeSwap are randomly
and sequentially produced, each involving at least
one of the selected 7 lectures.

Notice that constraining the choice to highly-
penalized lectures is essential because it is these
lectures that contribute strongly to constraint vi-
olations (and the cost function). In addition, the
most important elements of a local minimum so-
lution without contributing anything to the soft
constraint violations will remain unchanged, which
inherit the essential parts of the current local mini-
mum solution.

As previously mentioned, the perturbation
strength 7 is one of the most important ingredients
of ILS, which determines the quality gap between
the two solutions before and after perturbation. In
our case, ) is adaptively adjusted and takes val-
ues in an interval [Mmin, Pmaz] (set experimentally
Nmin = 47 Nmax = 15)

6.2. ATS and Two Self-Adaptive Mechanisms

Our ATS algorithm is based on an integration of
intensification (TS) and diversification (ILS’s Per-
turbation). Instead of just simply combining the TS
and ILS algorithms, we attempt to integrate them
in a more meaningful way. The depth of TS 6 and
the perturbation strength n seem to be two essential
parameters which control the behavior of the ATS
algorithm. On the one hand, a greater 6 value en-
sures a more intensive search. On the other hand, a
greater 7 corresponds to more possibilities of escap-
ing from the current local minimum. In order to get
a continuous tradeoff between intensification and di-
versification, we devise a mechanism to dynamically
and adaptively adjust these two important parame-
ters according to the historical search records.

At the beginning of the search, we take a basic TS
where the depth of TS 6 is a small positive number,
say 6 = 10. When TS cannot improve its best so-
lution, perturbation is applied to the best solution
with a weak strength (1 = Ny ). When the search
progresses, we record the number of TS phases (de-
noted by ¢) without improvement in cost function.
The depth of TS 0 and the perturbation strength n
are dynamically adjusted as follows: When the local
minimum obtained by TS is promising, i.e., when it
is close to the current best solution (f < fpest + 2),
the depth of TS is gradually increased to ensure a
more and more intensive search until no improve-
ment is possible, i.e., 8 = (14 u) -0 at each iteration

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96



10

12

14

16

18

Algorithm 3 Adaptive Tabu Search
Input: I: an instance of CB-CTT
Output: X*: the best solution found so far
% Initialization: line 6-8
% Intensification: line 11-17
% Diversification: line 10,23
Xp<feasible initial solution
§0, 000, nénmin
X*+TS(Xo,0)
repeat

X'« Perturb(X*,n)

% perturb X* with strength 7, get X’
11 X*TS(X',0)
12: if f(X*) < f(X*) +2 then

—
14

13: repeat
14: O—(1+p)-0
% gradually increase the depth of T'S

15: X*TS(X*,0)
16: until no better solution is obtained
17:  end if
18 if f(X*) < f(X*) then
19: XX~

% accept X* as the best solution found
20: 9(—90, N<Nmin
21:  else
22: 00y, £+ 1
23: N—max{Nmin + A+ &, Mmax }
24:  end if

25: until (stop condition is met)

(41=0.6). On the other hand, perturbation strength is
gradually increased so as to diversify more strongly
the search if the number of non-improving TS phases
increases. Moreover, the search turns back to the
basic TS before each perturbation, while the per-
turbation strength reset to 7,,,:» as soon as a better
solution is found.

For acceptance criterion in the perturbation pro-
cess, we use a strong exploitation technique, i.e.,
only better solutions are accepted as the best solu-
tion found so far.

Different stop conditions are possible for the
whole ATS algorithm, such as the fixed number of
TS phases, the maximum number of perturbations
without improvement in the cost function, the total
CPU time and so on. In this paper, we use two stop
conditions as described in Section 7.

Finally, our Adaptive Tabu Search algorithm is
described in algorithm 3.

11

Table 3
Features of the 14 competition instances

Instance n m p I occupancy conflicts
testl 46 12 20 207 86.25% 5.41%
test2 52 12 20 223 92.92% 5.05%
test3 56 13 20 252  96.92% 4.74%
test4 55 10 25 250 100% 4.98%

compO01 | 30 6 30 160 88.89% 11.49%

comp02 | 82 16 25 283 70.75% 7.50%

compO03 76 12 25 251 62.75% 8.33%

comp04 | 79 18 25 286 63.56% 5.06%

comp05 | 54 9 36 152  46.91%  21.10%

comp06 | 108 18 25 361 80.22% 5.37%

comp07 | 131 20 25 434 86.80% 4.46%

comp08 | 8 18 25 324 72.00% 4.35%

comp09 | 76 18 25 279 62.00% 5.75%

complO | 115 18 25 370 82.22% 5.32%

compll | 30 5 45 162 72.00% 13.10%

compl2 | 8 11 36 218 55.05% 14.29%

compl3 | 82 19 25 308 64.84% 4.76%

compld | 8 17 25 275 64.71% 7.31%

7. Experimental Results
7.1. Problem instances and experimental protocol

To evaluate the efficiency of our proposed ATS al-
gorithm, we carry out experiments on two different
data sets. The first set (4 instances) was previously
used in the literature for the old version of the CB-
CTT problem [18,19]. The second set (14 instances)
is from the Second International Timetabling Com-
petition ??. The main features of these instances
are listed in table 3. The last two columns denoted
by occupancy and con flicts represent the percent-
age of occupancy of rooms (denoted by I/(p - m))
and the density of the conflict matrix (denoted by
2-ne/n - (n—1) where n, represents the total num-
ber of edges connecting two conflicting courses),
respectively. Other symbols are described in table
1. Except for 2 instances, neither optimal solution
nor tight lower bound is known. The only avail-
able (probably very bad) lower bound is zero which
implies the satisfaction of all the soft constraints.

Our algorithm is programmed in C and compiled
using Dev C++ on a PC running Windows XP with
3.4GHz CPU and 2.0G RAM. To obtain our com-
putational results, each instance is solved 100 times
with different random seeds. In this paper, we use
two stop conditions for our ATS algorithm. The first
one is the timeout condition required by the ITC—
2007 competition rules. The second is the fixed num-
ber of iteration moves.

Note that all the following results are obtained
without tuning any parameter for different in-
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Table 4

Settings of important parameters

Param.

Description

Values or Updat-
ing

0o basic depth of TS 10
“w increase speed of 6 0.6
0 depth of TS 0=(014+p) -0
13 non-improvement TS phases E=¢+1
Nmin  basic perturbation strength 4
Nmaz  Strong perturbation strength 15
n perturbation strength n = max{Nmin +
A-E, nmax}
A updating factor of n 0.3
q candidate number of perturba- 30
tion lectures
) importance factor for pertur- 4.0
bation lecture selection
T reduction cutoff for No 2

stances, i.e., all the parameters used in our algo-
rithm are fixed or dynamically tuned during the
problem solving. It is possible that better solutions
would be found by using a set of instance-dependent
parameters. However, our aim is to design a robust
solver which is able to solve efficiently a large panel
of instances. Table 4 gives the descriptions and set-
tings of the important parameters used in our ATS
algorithm.

7.2. Results Using ITC-2007 Rules

Our first experiment aims to evaluate the ATS al-
gorithm on the 4 previous instances and 14 public
competition instances of the ITC-2007, by compar-
ing its performance with its two basic components
(TS and ILS) and another reference algorithm in
[11]. To make the comparison as fair as possible, we
implement the TS and ILS algorithms by reusing
the ATS algorithm as follows. We define the TS al-
gorithm as the ATS algorithm with its adaptive per-
turbation operator disabled. In order to give more
search power to the TS algorithm, the depth of TS
is gradually increased until the timeout condition is
met. The ILS algorithm is the ATS algorithm with
the tabu list disabled. All the other ingredients of
the ATS are thus shared by the three compared algo-
rithms. The stop condition is just the timeout con-
dition required by the ITC-2007 competition rules.
On our PC, this corresponds to 390 seconds. The
algorithm in [11] employs a dynamic TS technique,
which uses a quite different neighborhood structure
and whose search space also includes unfeasible as-
signments as well.

Table 5 shows the computational results of these
four algorithms run under the ITC-2007 competi-
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Table 5
Computational results and comparison under the ITC-2007
competition stop conditions

ATS TS | ILS | best

in [11}

Instance|fmin fave © Iter Pert Sec |fmin|fmin| fmin
testl [224 229.5 1.8 15586 208 189 | 230|226 | 234
test2 | 16 17.1 1.0 35271 406 182 | 16 | 16 17
testd | 74 82.9 4.1 20549 369 160 | 82 | 79 | 86
testd | 74 89.4 6.1 37346 735 208 | 92 | 83 | 132
compO0l| 5 5.0 0.0 321 5 5 5 5 5
comp02| 34 60.6 7.5 15647 545 370 | 55 | 48 | 75
comp03| 70 86.6 6.3 8246 102 257 | 90 | 76 | 93
comp04| 38 479 4.0 5684 68 124 | 45 | 41 45
comp05|298 328.5 11.7 35435 54 191 | 315|303 | 326
comp06| 47 69.9 7.4 13457 245 116 | 58 | 54 | 62
comp07| 19 28.2 5.6 15646 368 383 | 33 | 25 | 38
comp08| 43 51.4 4.6 17404 190 380 | 49 | 47 | 50
comp09| 99 113.2 6.9 20379 238 370 | 109|106 | 119
complO| 16 38.0 10.8 16026 160 389 | 23 | 23 | 27
compll| 0 0.0 0.0 236 3 3 0 0 0
compl2|320 365.0 17.5 40760 590 382 | 330|324 | 358
compl3| 65 76.2 6.1 16779 182 300 | 71 | 68 7
compl4d| 52 62.9 6.4 24427 270 368 | 55 | 53 | 59

tion rules. First six columns give the results of our
ATS algorithm, showing the following performance
indicators: the best score (fmin), the average score
(fave) and the standard deviation (o) over 100 inde-
pendent runs, as well as the total number of itera-
tion moves (Iter), the total number of perturbations
(Pert) and the total CPU time on our computer
needed for finding the best solution fi,:n (Sec). If
there exist multiple hits on the best solution in the
100 independent runs, the values listed in table 5 are
the average over these multiple best hits. The last
three columns in table 5 indicate the best results ob-
tained by our TS and ILS, as well as those from [11].

From table 5, one clearly observes that the ATS
algorithm achieves always the best results (in bold),
comparing with the other three algorithms. For the
instances where the four algorithms reach the same
results (comp01 and compl11), they concern the op-
timal solutions and can be reached by our ATS al-
gorithm within 5 seconds). For other instances, our
ATS algorithm outperforms its two main compo-
nents T'S and ILS, which highlights the importance
of the hybrid mechanism of adaptively integrating
TS and ILS. When comparing with the reference al-
gorithm in [11], one finds that even the results of our
TS and ILS algorithms are better than that from
[11].
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Table 6
Computational results of ATS algorithm under the relaxed
stop condition

ATS
Instance | fimin  fave o ITter Pert Sec
testl 224 2272 0.5 17845 234 216
test2 16 16.0 0 32416 351 167
test3 73 76.0 2.56 40849 667 2078
test4 73 86.4 4.23 109198 2054 1678
comp01 5 5.0 0.0 321 5 5
comp02 29 50.6 8.78 768334 1032 3845
comp03 66 78.6 6.07 160909 1903 2078
comp04 35 42.3  3.53 23113 266 566
comp05 | 292 3285 11.7 35435 54 191
comp06 38 56.5 8.0 216848 1527 2973
comp07 13 29.7 6.48 390912 3508 4035
comp08 39 48.8 3.75 203982 2352 3069
comp09 98 109.2 5.7 70443 909 1454
compl0 10 28.8 9.0 33971 371 838
compll 0 0.0 0.0 247 4 3
compl2 310 328.5 11.7 742316 10392 2513
compl3 59 69.9 7.4 793989 10078 4207
compl4 52 28.2 5.6 23754 260 378

7.3. Results Using More Computing Budgets

One observes that the best solutions for some in-
stances are reached near the timeout (390 seconds)
following the I'TC-2007 rules. This might reveal the
possibility of obtaining still better results if the rig-
orous stop condition required by ITC-2007 is re-
laxed. Therefore, in our second experiment, we aim
to evaluate the search potential of our proposed ATS
algorithm with a relaxed stop condition. For this
purpose, we terminate our algorithm when a fixed
number of iteration moves (800,000) is reached. Ta-
ble 6 shows the computational results of our ATS al-
gorithm run under this stop condition and indicates
the following information: fiin, fave, 0, Iter, Pert
and Sec over 100 independent runs. The meaning of
all these symbols are the same as in table 5.

From table 6, one finds that for most instances
(except two instances of the first set and three of
the second ), better solutions are found under the
relaxed stop condition. One observes that our ATS
algorithm improves the results obtained under the
competition timeout condition listed in table 5, in
terms of the three criteria finin, fave and o. It should
be noticed that the results in bold are the best so-
lutions we found so far and we list these results for
future comparisons.

Given the fact that neither previous best results
nor good lower bounds are available for these in-
stances (except for comp01 and comp11 whose lower
bounds is easy to calculate and reached by our algo-
rithm within several seconds), it is difficult to have
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an absolute assessment of these results for the mo-
ment. The competition results (we are one of the five
finalists of ITC-2007) would give us a more reliable
comparison basis, but more generally, tight lower
bounds are necessary and remain to be developed.

8. Analysis and Discussion

Our second aim in this paper is to analyze some
important features of the proposed ATS algorithm.
In this section, we attempt to answer a number of
important questions: Why do we combine the two
neighborhoods and in the token-ring way? What is
the impact of the neighborhood reduction technique
on the performance of the algorithm? How about
the importance of the randomized penalty-guided
perturbation strategy? Whether the new proposed
double Kempe chains neighborhood is a value-added
one? In this section we carry out a series of experi-
mental analysis and attempt to answer these ques-
tions.

8.1. Neighborhood Combination

One of the most important features of neighborhood-

based meta-heuristic is surely the definition of its
neighborhood. We propose in this paper two dif-
ferent neighborhoods: basic neighborhood N7 and
advanced neighborhood Ns. In order to make out
why these two neighborhoods should be combined,
we carried out experiments to compare the perfor-
mance of these two neighborhoods and their differ-
ent combinations. In this paper, we study two ways
of neighborhood combination: neighborhood union
and token-ring search.

In neighborhood union (denoted by Ny U N3), at
each iteration the neighborhood structure includes
all the moves of two different neighborhoods, while
in token-ring search, one neighborhood search is ap-
plied to the local minimum obtained by the previous
one and this process continues until no further im-
provement is possible [19]. For token-ring combina-
tion, we begin the search in two ways: from N; and
Ny respectively, denoted by N1— Ny and No— Nj.

To make the comparison as fair as possible, we em-
ploy a steepest descent (SD) algorithm where only
better neighborhood solutions are accepted. This
choice can be justified by the fact that the SD algo-
rithm is completely parameter free, and thus it al-
lows a direct comparison of different neighborhoods
without bias.
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Table 7
Average soft costs for different neighborhoods and their com-

binations
f

Instan. N1 N N1UN2 N;—Na No—Nj
comp01| 31(0.1) 23(0.1) 18(0.2) 16(0.2) 18(0.2)
comp02| 186(0.4) 143(1.8) 134(2.3) 120(1.6) 123(1.7)
comp03| 210(0.4) 187(1.2) 177(2.0) 170(1.16) 173(1.3)
comp04 | 152(0.7) 131(3.5) 117(6.7) 105(2.9) 100(4.0)
comp05 | 871(0.4) 627(0.4) 566(0.5) 580(0.9) 522(1.0)
comp06| 197(0.8) 162(4.7) 151(8.2) 140(3.1) 140(5.0)
comp07| 190(1.2) 141(8.4) 122(15.2) 111(5.7) 115(8.0)
comp08| 154(0.7) 129(3.4) 112(5.2) 105(2.5) 109(3.5)
comp09| 231(0.5) 189(2.1) 182(2.1) 174(1.7) 175(2.1)
complO| 186(0.9) 147(5.3) 128(9.0) 127(3.0) 116(5.1)
compll| 11(0.1) 11(0.1) 6(0.2) 4(0.1) 5(0.2)
compl2| 774(0.5) 743(0.5) 684(0.8) 667(0.6) 654(1.1)
compl3| 186(0.8) 151(3.9) 134(7.6) 131(2.7) 130(3.7)
compl4| 175(0.5) 156(1.3) 132(2.7) 120(1.6) 124(2.0)

We apply the SD algorithm with Ny, No, N3 UNa,
N1— Ny and No— Ny to solve the 14 competition
instances. The average soft cost and CPU time (sec-
onds, in brackets) over 50 independent SD runs are
given in table 7. Note that the average soft costs
have been rounded up and the best average soft costs
are indicated in bold for each instance. From table
7, one clearly finds that Ny—Ns and No—Nj ob-
tain much better results than not only the single
neighborhoods N; and Nz but also neighborhood
union N7 U Ns. When comparing two different ways
of token-ring search N;— Ny and No— N7, one ob-
serves that they produce similar results in terms of
the solution quality. However, starting the search
from the basic neighborhood N; costs less CPU time
than from the advanced neighborhood N,. These
results encourage us to combine the two neighbor-
hoods N7 and Ns in a token-ring way in our ATS
algorithm and starting the search from the basic
neighborhood Nj.

Moreover, we have carried out the same exper-
iments using other advanced local search methods
(such as Tabu Search and Iterated Local Search) un-
der various stop conditions. As expected, the token-
ring way combination of N; and Na always produces
the best solutions. Meanwhile, for the two ways of
token-ring search, starting the search from the ba-
sic neighborhood N; costs less CPU time than from
Ny for reaching similar solution quality.

8.2. Influence of Neighborhood Reduction

In subsection 5.3, we presented a special reduc-
tion technique to estimate the goodness of a move
of the advanced neighborhood Ny without actually

14

calling the matching algorithm. Here we show that
the proposed neighborhood reduction technique 1)
enables to reduce considerably the evaluation cost
of Na; 2) does not sacrifice the solution quality.

000

7000 -

6000

—O— without reduction technique
5000 - —— with reduction technique b

neighborhood size
.

2000

1000+

o £ E W % 0 ]
local search iterations

Fig. 2. Kempe chain neighborhood size with and without the
reduction technique

In order to verify the first assumption, we com-
pare the two neighborhoods with and without the
reduction technique (denoted by N3 and Nj respec-
tively) in terms of their neighborhood size, which
determines the computational efforts for evaluating
the whole neighborhood solutions. Figure 2 shows
the thoroughly evaluated neighborhood size of Ny
and NJ evolving with SD local search iterations for
the largest instance comp07 (very similar results are
observed for other instances).

From figure 2, it is clear that with the reduction
technique the neighborhood size (IN3) is becoming
smaller and smaller along with the algorithm pro-
gressing, while the neighborhood size without reduc-
tion technique (N2) remains the same or even be-
comes larger during the SD algorithm. One observes
that by employing this reduction technique, at each
iteration only a small subset of the neighborhood so-
lutions are thoroughly evaluated and thus it allows
the algorithm to save considerable CPU time.

On the other hand, we attempt to investigate
whether the reduced neighborhood sacrifices the so-
lution quality. For this purpose, we tested the SD
algorithm on the 14 competition instances with and
without the reduction technique technique. Figure
3 presents the average soft cost of Ny and N5 over
50 independent runs for each instance. It is easily
seen that the average soft costs with and without
the reduction technique are almost the same. This
means that the employment of this technique does
not sacrifice the solution quality.
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In order to make out why the solution quality of
the modified neighborhood N3 is not sacrificed, we
observe the distributions of the local minimum so-
lutions of the original neighborhood Na. Figure 4
shows the relationship of the period related sub-cost
Afp with the total incremental cost Af during a
SD procedure (for the same instance comp07). Each
point in the graph represents a local minimum solu-
tion (x-axis denotes its period related sub cost Af,
and y-axis denotes its total incremental cost Af)
during the SD algorithm based on Na. One can eas-
ily observe that almost all the local minimum solu-
tions lies in the left side of the threshold line Af, =
2, i.e., we can use the threshold 7 = 2 to cutoff the
neighborhood without missing the majority of the
local minimum solutions. It is also interesting to ob-
serve that the period related sub-cost A f, is approx-
imately proportional to the total incremental cost

—— without recluction technique
—C— with reduction technique

average soft cost

instances

Fig. 3. Average soft cost comparison for Na with and without
the reduction technique

total incremental cost
L]
-

35 30 -5 -0 -15 -10 5
period related sub-cost

Fig. 4. Relationship between the period-related sub-cost A f,
with the total incremental cost Af for Na

15

A f. This is the basic reason why the period-related
sub-cost A f, can be used to estimate the goodness
of the total incremental cost A f.

8.3. Analysis of Penalty-Guided Perturbation
Strategy

In subsection 6.1, we introduced a new penalty-
guided perturbation strategy to destruct the current
solution when a local optimum solution is reached.
This strategy involves randomly selecting the highly-
penalized lectures and top rank lectures have more
chance to be selected. We believe that constraining
the choices to the highly-penalized lectures is essen-
tial for the ATS algorithm.

In fact, there exist a lot of strategies to select the
moved lectures and perturb the local minimum so-
lution. In order to testify the efficiency of the pro-
posed randomized penalty-guided perturbation ap-
proach, we compare the following three lecture se-
lection strategies:

a. our penalty-guided perturbation strategy pro-
posed in section 6.1, called randomized penalty-
guided perturbation (RPGP);

b. the moved lectures are always the first n (1 is per-

turbation strength) highly-penalized ones, called
intensive penalty-guided perturbation (IPGP);

c. the moved lectures are randomly selected from all
the lectures, called random perturbation (RP).

average soft cost

Fig. 5. Average soft costs for perturbation strategies RPGP,
IPGP and RS

Keeping other ingredients unchanged in our ATS
algorithm, we tested the above three lecture se-
lection strategies with the 14 instances under the
competition timeout stop condition. Figure 5 shows
the average soft costs of these three strategies over
50 independent runs. One can easily find that the
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randomized and intensive penalty-guided strategies
outperforms the random strategy, which highlights
the importance of the penalty-guided perturbation
strategy. In addition, the randomized penalty-
guided strategy (RPGP) is also slightly better
than the intensive penalty-guided strategy (IPGP),
which implies that always restricting moved lec-
tures to the highest penalized ones is too intensive
such that the search may fall easily into a previous
local optimum.

On the other hand, from the computational re-
sults of TS and ILS reported in table 5, we can
clearly find that ILS with the penalty-guided strat-
egy even outperforms TS (without perturbation) for
almost all the 14 instances. This convinces us again
that constraining the choice to highly-penalized lec-
tures is essential because it is these lectures that
contribute strongly to constraint violations (and the
cost function). Meanwhile, we should also notice
that the random selection strategy makes our per-
turbation strategy much more flexible than the in-
tensive penalty-guided strategy.

8.4. Interests of the Double Kempe Chains Move

In subsection 5.2, we have proposed a new neigh-
borhood move-double Kempe chains interchange,
where two connected components of a subgraph con-
cerning two periods are involved. In order to eval-
uate whether the newly proposed double Kempe
chains move is a value-added one, our experiment
is carried out to evaluate the search capability of
this neighborhood move, compared with three other
previously proposed ones. For this purpose, we re-
define four neighborhoods as follows, each of which
concerns only one kind of move.

Neighborhood N{*: N{* is defined as all the
feasible moves of OneMowve. Each OneMowve consists
of moving one lecture from one position to another
free position.

Neighborhood Nl(b): Nl(b) is defined as all the
feasible moves of TwoSwap. Each TwoSwap move
consists in exchanging the hosting periods and
rooms assigned to two lectures of different courses.
Note that TwoSwap move does not include any
move of OneMove.

Neighborhood N{": N{* is defined as all the
feasible moves of Single K Chain. Each Single K Chain
move consists in exchanging the hosting periods as-
signed to the lectures in a single Kempe chain con-
cerning two distinct periods, see subsection 5.2.
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Table 8
Average soft costs for Nl(a) to Nz(b) over 50 independent runs

f

Instan. | N N NIY N N>

compO1 | 42(0.0) 33(0.1) 49(0.0) 24(0.1) | 23(0.1)
comp02 | 194(0.4) 228(0.2) 204(0.4) 143(1.4) | 143(1.8)
comp03 | 217(0.4) 248(0.2) 245(0.3) 193(1.1)|187(1.2)
comp04 | 153(0.7) 199(0.4) 194(0.6) 132(3.5)|131(3.5)
comp05 | 1016(0.3) 995(0.2) 847(0.8) 684(0.4) | 627(0.4)
comp06 | 207(0.7) 260(0.4) 255(0.7) 158(4.6) | 162(4.7)
comp07 | 203(1.1) 247(0.6) 230(1.3) 140(8.2) | 141(8.4)
comp08 | 154(0.7) 205(0.3) 185(0.6) 139(3.2) | 129(3.4)
comp09 | 238(0.4) 273(0.2) 244(0.4) 193(2.0) | 189(2.1)
compl0 | 195(0.8) 250(0.4) 249(0.9) 145(5.1) | 147(5.3)
compll | 16(0.1) 16(0.1) 25(0.0) 9(0.1) | 11(0.1)
compl2 | 807(0.5) 874(0.3) 885(1.6) 746(0.5) | 743(0.5)
compl3 | 197(0.7) 233(0.4) 224(0.7) 151(3.7)|151(3.9)
compl4 | 180(0.5) 213(0.2) 206(0.3) 151(1.2) | 156(1.3)

Neighborhood N2(b): N2(b) is defined as all
the feasible moves of DoubleKChain. Each Dou-
bleK Chain move consists in exchanging the hosting
periods assigned to the lectures in two distinct
Kempe chains concerning two distinct periods,
see subsection 5.2. It should be noticed that Dou-
bleK Chain here does not include any move of Sin-
gleKChain, i.e., none of the two Kempe chains can
be empty.

Note that except DoubleKChain move, the first
three moves have been proposed in the previous lit-
erature [12]. Tt is easy to see that our neighbor-
hoods N7 and Nj defined in subsection 5.2 are the
neighborhood union of these four neighborhoods,
e, Ny = NYUN®Y N, =N®uND.

Table 8 shows the average cost functions for the
SD algorithm based on N\ ~N{? over 50 indepen-
dent runs. The averaged running times are given in
parenthesis. From table 8, it is observed that the new
proposed double Kempe chain neighborhood Nz(b)
dominates the other three neighborhoods in terms
of the solution quality, but needs more CPU time
than others. However, we believe that its power to
find high quality solutions deserves the additional
CPU cost.

When comparing with the results of neighborhood
N3 (given in the last column and taken from table

7), one can easily find that neighborhood Nz(b) and
N> obtains quite similar results in terms of both so-
lution quality and CPU time. Note that their results
are much better than that of the single Kempe chain
neighborhood NQ(a), which emphasizes the impor-
tance of the proposed double Kempe chain move.
We have to mention that the same experiments
have also been carried out on our TS, ILS and ATS
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algorithms. As was expected, the double Kempe
chains move always obtains the best results in
terms of solution quality. This further highlights
the interest of the new Double KChain move.

9. Conclusions

To conclude, we have provided a mathemati-
cal formulation of the university curriculum-based
course timetabling problem and presented a hybrid
heuristic approach (Adaptive Tabu Search, ATS)
to solving this difficult problem. The proposed ATS
algorithm follows a general framework composed
of three phases: initialization, intensification and
diversification.

The proposed algorithm integrates a number of
original features. First, we have proposed a new
greedy heuristic for quickly producing initial feasi-
ble solutions. Second, we have introduced the double
Kempe chains neighborhood structure for the CB-
CTT problem and a special technique for reducing
the size of this time-consuming yet effective neigh-
borhood. Third, we proposed a randomized penalty-
guided perturbation strategy to perturb current so-
lution when TS reaches the local optimum solution.
Last but not least, for the purpose of providing the
search with a continuous tradeoff between intensifi-
cation and diversification, we have proposed a mech-
anism for adaptively adjusting the depth of TS and
perturbation strength.

We have assessed the performance of the proposed
ATS algorithm on two sets of 18 problem instances.
For these instances, we showed the advantageous
merits of the proposed algorithm over TS and ILS
alone, as well as another reference algorithm. We
also present the best solutions found so far when the
competition stop condition is relaxed. These results
are reported for future comparisons. Tight lower
bounds would have allowed a finer assessment, un-
fortunately, such bounds are not unavailable yet.
Given the various constraints and the complexity of
the problem, it is expected that tight lower bounds
can be obtained only by advanced technique, which
constitutes naturally another interesting search op-
portunity.

Our second contribution in this paper is to inves-
tigate several essential parts of our proposed algo-
rithm. We first carried out experiments to demon-
strate that a token-ring way of combination is ap-
propriate for the two different neighborhoods Ny
and Ns. In addition, the effectiveness of the Kempe
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chain neighborhood reduction technique is carefully
verified. Also, we have demonstrated that our ran-
domized penalty-guided perturbation strategy is es-
sential for our ATS algorithm. Finally, we carried
out experiments to show that the proposed double
Kempe chains move outperforms three other previ-
ous ones in the literature.

Let us comment that although the focus of this
work is to propose a particular algorithm developed
for solving a course timetabling problem, the basic
ideas and fundamentals are quite general and would
be applicable to other similar problems. At the same
time, it should be clear that for a given problem,
it is indispensable to realize specific adaptations by
taking into account problem-specific knowledges in
order to obtain an effective algorithm.
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