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Abstract

This paper presents an Adaptive Tabu Search algorithm (denoted by ATS) for solving the problem of curriculum-based
course timetabling. The proposed algorithm follows a general framework composed of three phases: initialization,
intensification and diversification. The initialization phase is primarily aimed to construct a feasible initial timetable
using a fast greedy heuristic. When a feasible initial assignment is reached, an adaptively combined intensification
(Tabu Search) and diversification (Perturbation Operator from Iterated Local Search) phase is used in order to
reduce the number of soft constraint violations without breaking hard constraints any more. The proposed ATS
algorithm integrated several distinguished features including an original double Kempe chains neighborhood structure,
a penalty-guided perturbation approach and a mechanism for dynamically integrating tabu search with perturbation.
Computational results indicate that better solutions can be found compared with Tabu Search and Iterated Local
Search alone, as well as another reference algorithm. This paper also shows an analysis to explain which are the
essential ingredients of the proposed ATS algorithm.
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1. Introduction

As a problem thatmost universitiesmust face year2

after year, timetabling has become an area of in-
creasing interest in the community of both research4

and practice in recent decades. In essence, it con-
sists of assigning a number of events, each with a6

number of features, to a limited number of times-
lots and rooms subject to certain (hard and soft)8

constraints. Typical cases in this area include ed-
ucational timetabling [12], sport timetabling [32],10

employee timetabling [13], transport timetabling [3]

⋆ This algorithm is ranked as one of the five finalists for the
track 3 of the Second International Timetabling Competition
(ITC–2007).
∗ Corresponding author.

Email addresses: lu@info.univ-angers.fr (Zhipeng
Lü), hao@info.univ-angers.fr (Jin-Kao Hao).

and so on. In this paper, we consider one of the prob- 12

lems in the category of educational timetabling.
Educational timetabling problems can be gener- 14

ally classified into two categories: exam timetabling
and course timetabling. The later can be further 16

divided into two sub-categories: post enrollment-
based course timetabling and curriculum-based 18

course timetabling (CB-CTT). The main difference
is that for post enrollment timetabling, conflicts 20

between courses are set according to the students’
enrollment data, whereas the curriculum-based 22

course timetable is scheduled on the basis of the
curricula published by the university. In this paper, 24

our study is focused on the curriculum-based course
timetabling, the formulation of which was recently 26

proposed as the third track of the Second Inter-
national Timetabling Competition (ITC–2007) [?]. 28

This competition is aimed to close the gap between
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research and practice within the area of educational
timetabling [23].2

For university curriculum-based course timetabling,
a set of lectures must be assigned into timeslots4

and rooms subject to a given set of constraints.
Two types of constraints can be defined in every6

timetabling problem: First, the constraints which
must be strictly satisfied under any circumstances8

are normally called hard constraints. Second, the
constraints which are not necessarily satisfied but10

whose violations should be desirably minimized are
usually called soft constraints. An assignment that12

satisfies all the hard constraints is called a feasible

timetable. The objective of this problem is to min-14

imize the number of soft constraint violations in a
feasible timetable.16

The general university timetabling problem is
known to be difficult and has been proved to be NP-18

hard [14,17]. In this context, exact solutions would
be only possible for problems of limited sizes. In-20

stead, heuristic algorithms based on metaheuristics
have shown to be a highly effective approach to this22

kind of problems. Examples of these algorithms in-
clude graph coloring heuristics [5,7,9], tabu search24

[26,30,36], simulated annealing [2,34], evolution-
ary algorithms [6,15,29], constraint based approach26

[16,24], GRASP [10,33], case-based reasoning [4]
and so on. Interested readers are referred to [8,21,31]28

for a comprehensive survey of the automated ap-
proaches for university timetabling presented in30

recent years.
The objective of this paper is two-fold: a three-32

phases solution algorithm for solving the CB-CTT
problem was presented and some essential ingre-34

dients of the proposed algorithm were carefully
investigated. The proposed ATS algorithm follows36

a general framework composed of three phases: ini-
tialization, intensification and diversification. The38

initialization phase is primarily aimed to construct a
feasible initial timetable using a fast greedy heuris-40

tic. When a feasible initial assignment is reached,
the intensification and diversification phases are42

adaptively combined in order to reduce the number
of soft constraint violations without breaking hard44

constraints any more. The performance of the pro-
posed hybrid algorithm was assessed on a set of 446

instances used in the literature and a set of 14 pub-
lic competition instances from the ongoing Second48

International Timetabling Competition, showing
very competitive results.50

As the second objective of this paper, we care-
fully investigated several important features of the52

proposed algorithm. The analysis shed light on why
some ingredients of our ATS algorithm are essential 54

and how they lead to the efficiency of our ATS algo-
rithm. 56

The rest of this paper is organized as follows. Sec-
tion 2 describes the mathematical formulation of the 58

CB-CTT problem. Section 3 introduces the main
idea and the general framework of the ATS algo- 60

rithm. Following that, Section 4 presents the initial
solution generator based on two greedy heuristics. 62

Section 5 describes in details the basic search engine
of our ATS algorithm—Tabu Search. Section 6 de- 64

picts the penalty-guided perturbation operator and
explains how TS and perturbation is dynamically 66

combined. In Section 7 the computational results of
the algorithm are presented and discussed. Section 68

8 presents investigations on several essential parts of
the proposed ATS algorithm. Eventually in Section 70

9 we draw some conclusions.

2. Curriculum-Based Course Timetabling 72

2.1. Problem Description

The CB-CTT problem consists of scheduling lec- 74

tures of a set of courses into a weekly timetable,
where each lecture of a course must be assigned a 76

period and a room in accordance with a given set
of constraints. A feasible timetable is one in which 78

all lectures have been scheduled at a timeslot and a
room, so that the hard constraints H1∼H4 are satis- 80

fied. In addition, a feasible timetable satisfying the
four hard constraints incurs a penalty cost for the 82

violations of the four soft constraints S1∼S4. Then,
the objective of the CB-CTT problem is to minimize 84

the number of soft constraint violations in a feasi-
ble solution. The four hard constraints and four soft 86

constraints are:
• H1. Lectures: All lectures of a course must be 88

scheduled to a distinct period and a room.
• H2.RoomOccupancy: Any two lectures cannot 90

be assigned in the same period and the same room.
• H3. Conflicts: Lectures of courses in the same 92

curriculum or taught by the same teacher cannot
be scheduled in the same period, i.e., any period 94

cannot have an overlapping of students or teach-
ers. 96

• H4. Availability: If the teacher of a course is not
available at a given period, then no lectures of the 98

course can be assigned to that period.
• S1: Room Capacity: For each lecture, the num- 100
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ber of students attending the course should not
be greater than the capacity of the room hosting2

the lecture.
• S2: Room Stability: All lectures of a course4

should be scheduled at the same room. If this is
impossible, the number of occupied rooms should6

be as few as possible.
• S3:MinimumWorking Days: The lectures of a8

course should be spread into the given minimum
number of days.10

• S4:CurriculumCompactness: For a given cur-
riculum a violation is counted if there is one lec-12

ture not adjacent to any other lecture belonging to
the same curriculum within the same day, which14

means the agenda of students should be as com-
pact as possible.16

Given the above description of this problem and
in order to avoid any confusion, we present below a18

first mathematical formulation of the problemwhich
is missing in the literature.20

2.2. Problem Formulation

The CB-CTT problem consists of a set of n22

courses C = {c1, c2, . . . , cn} to be scheduled in a
set of p periods T = {t1, t2, . . . , tp} and a set of m24

rooms R = {r1, r2, . . . , rm}. Each course ci is com-
posed of li same lectures to be scheduled. Without26

leading to confusion, we do not distinguish between
lecture and course in the following context. A pe-28

riod is a pair composed of a day and a timeslot and
p periods are distributed in d week days and h daily30

timeslots, i.e., p = d ∗ h. In addition, there are a
set of s curricula CR = {cr1, cr2, . . . , crs} where32

each curriculum crk is a group of courses that share
common students.34

For the solution representation, we choose a di-
rect solution representation to make things as sim-36

ple as possible. A candidate solution consists of p∗m
matrix X where xi,j corresponds to the course la-38

bel assigned at period ti and room rj . If there is no
course assigned at period ti and room rj , then xi,j40

takes the value ”null”. With this representation we
ensure that there will be no more than one course42

assigned to each room in any period, meaning that
the second hard constraint H2 will always be satis-44

fied. For courses, rooms, curricula and solution rep-
resentation X , a number of constant symbols and46

variable definitions are presented in tables 1 and 2.
Given these notations, we can describe the CB-48

CTT problem in a formal way for a candidate solu-

Table 1
Table of symbols
Symbols Description

n the total number of courses
m the total number of rooms
d the number of working days per week
h the number of timeslots per working day
p the total number of periods, p = d ∗ h

s the total number of curricula
C the set of all courses, |C| = n

R the set of all rooms, |R| = m

T the set of all periods, |T | = p

CR the set of all curricula, |CR| = s

li the total number of lectures of course ci
l the total number of lectures, l =

∑n

1
li

stdi the number of students attending course ci
tci the label of the teacher instructing course ci
mdi the number of minimum working days of course ci
capj the room capacity of room rj
crk the kth curriculum including a set of courses
uavi,j whether course ci is unavailable at period tj .

uavi,j = 1 if it is unavailable, uavi,j = 0 otherwise

Table 2
Table of variables
Variables Description

xi,j the label of the course assigned at period ti and
room rj

nri(X) the number of rooms occupied by course ci for a
candidate solution X

ndi(X) the number of working days that course ci takes
place at for a candidate solution X

appk,i(X) whether curriculum crk appears at period ti for
a candidate solution X, appk,i(X) = 1 when any
course in curriculum crk is scheduled at period ti,
appk,i(X) = 0 otherwise.

tion X . The four hard constraints and the penalty 50

cost for the four soft constraints are as follows:
• H1. Lectures: ∀ck ∈ C, 52

∑

i,j

slk(xi,j) = lk

where 54

slk(xi,j) =





1, if xi,j = ck;

0, otherwise.

• H2. Room Occupancy: this hard constraint is 56

automatically satisfied in our solution representa-
tion. 58

• H3. Conflicts: ∀xi,j , xi,k ∈ X, xi,j = cu, xi,k =
cv, 60

(∀crq , cu /∈ crq ∨ cv /∈ crq) ∧ (tcu 6= tcv)

• H4. Availability: ∀xi,j ∈ X, xi,j = ck, 62

uavk,i = 0
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• S1: Room Capacity: ∀xi,j ∈ X, xi,j = ck,

f1(xi,j) =





α1 · (stdk − capj), if stdk > capj ;

0, otherwise.
2

• S2: Room Stability: ∀ci ∈ C,

f2(ci) = α2 · (nri(X)− 1)4

• S3: Minimum Working Days: ∀ci ∈ C,

f3(ci) =





α3 · (mdi − ndi(X)), if ndi(X) < mdi;

0, otherwise.
6

• S4: Curriculum Compactness: ∀xi,j ∈ X ,
xi,j = ck,8

f4(xi,j) = α4 ·
∑

crq∈CR

c crk,q · isoq,i(X)

where10

c crk,q =





1, if ck ∈ crq;

0, otherwise.

isoq,i(X) =





1, if (i%h = 1 ∨ appq,i−1(X) = 0)

∧(i%h = 0 ∨ appq,i+1(X) = 0);

0, otherwise.

12

One observes that in the S4 soft constraint func-
tion, the calculation is only limited within the same14

day. isoq,i(X) = 1 means that curriculum crq in the
[i/h]th day is isolated, i.e., there is no any course16

in the curriculum crq scheduled adjacent (before or
after) to the timeslot i%h in the [i/h]th day. More18

specifically, curriculum crq does not appear before
(after) period ti means that ti is the first (last) times-20

lot of a working day or crq does not appear at ti−1

(ti+1).22

Note that α1, α2, α3 and α4 are the penalties
associated to each of the soft constraints. In this24

problem formulation, they are set as:

α1 = 1, α2 = 1, α3 = 5, α4 = 226

It is obvious that the soft constraints S1 and S2
are uniquely room-related costs while S3 and S4 are28

period-related ones. This feature allows us to deal
with the incremental cost of neighborhood moves in30

a more flexible way (as described in section 5.3 and
8.2).32

With the above formulation, we can then calcu-
late the total soft penalty cost for a given candidate34

feasible solution X according to the cost function f
defined in formula (1). The goal is then to find a fea- 36

sible solution X∗ such that f(X∗) ≤ f(X) for all X
in the feasible search space. 38

f(X) =

∑

xi,j∈X

f1(xi,j) +
∑

ci∈C

f2(ci)

+
∑

ci∈C

f3(ci) +
∑

xi,j∈X

f4(xi,j)
(1)

3. General Solution Framework 40

In this paper, we present a hybrid metaheuristic
algorithm (Adaptive Tabu Search, denoted by ATS) 42

for solving the curriculum-based course timetabling.
The proposed algorithm follows a general frame- 44

work composed of three phases: initialization, in-
tensification and diversification. The initialization 46

phase is primarily aimed to construct a feasible ini-
tial timetable using a fast greedy heuristic. When a 48

feasible initial assignment is reached, the adaptively
combined intensification and diversification phase 50

is used in order to reduce the number of soft con-
straint violations without breaking hard constraints 52

any more. The intensification phase employs a Tabu
Search algorithm [20] while the diversification phase 54

is based on a penalty-guided perturbation operator
borrowed from Iterated Local Search [22]. 56

In the initialization phase, a feasible solution is
constructed from empty using a greedy heuristic. At 58

each time, one appropriate lecture of a course is se-
lected and assigned to a period and a room. For this 60

purpose, we proposed two greedy heuristic rules for
course selection and period-roomassignment respec- 62

tively. Notice that soft constraints are also consid-
ered in this procedure when deciding a period-room 64

pair for a selected lecture.
For the intensification phase, the basic search en- 66

gine is based on Tabu Search (TS) [20], in which we
introduce two distinct neighborhood structures: one 68

swaps two lectures or moves one lecture to a free
position, the other is defined by single and double 70

Kempe chain interchanges concerning two distinct
periods. Our TS algorithm is implemented by com- 72

bining these two neighborhoods in a token-ring way
[19]. 74

When the TS cannot improve the solution qual-
ity any more, a diversification phase base on Iter- 76

ated Local Search [22] is triggered to help escape
from local optimum solution. In order to not only 78

inherit the essential parts of the current local opti-
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mum solution obtained but also move toward new
promising regions of the search space, we propose2

a randomized penalty-guided perturbation operator
to destruct the reached local optimum. Thus, a new4

TS phase starts then with the perturbed solution.
In order to provide the search with a continu-6

ous tradeoff between intensification and diversifica-
tion, a mechanism is proposed to adaptively adjust8

the strength of TS and perturbation, which consti-
tutes the main skeleton of our Adaptive Tabu Search10

(ATS) algorithm.

4. Initial Solution12

The first phase of our algorithm aims to gen-
erate a feasible initial solution. This is achieved14

by a sequential greedy heuristic starting from
an empty timetable, where assignments are con-16

structed by inserting one appropriate lecture into
the the timetable at each time. At each step, two18

distinct operations are carried out: one is to select
a still unassigned lecture of a course, the other is20

to determine a period-room pair for this lecture.
To this end, two heuristic rules are utilized, where22

lectures are selected and scheduled in a dynamic
way primarily based on an idea of least period avail-24

ability. It should be mentioned that, in our initial
solution generator, we also take into account the26

soft constraints by introducing a weighted heuristic
function involving all hard and soft constraint fac-28

tors. Before describing the greedy heuristics, it is
necessary to give some basic definitions as follows.30

Definition 1. feasible timetable: a feasible
timetable X is a complete timetable assignment32

which satisfies all the four hard constraints H1∼H4.
Definition 2. partial feasible timetable: A34

partial timetable, denoted by X̃ , is such that only a
part of the lectures are scheduled to the timetable36

without violating any hard constraint.
Definition 3. feasible lecture insertion: Given38

a partial feasible timetable, a feasible lecture inser-
tion consists of choosing one unassigned lecture of40

course ci and scheduling it to a period tj and a room
rk such that no hard constraint is violated, denoted42

by < ci, tj , rk >.
Definition 4. available period: Given a partial44

feasible timetable X̃, period tj is available for course
ci means that there exists at least one room at pe-46

riod tj such that course ci can be assigned without
violating any hard constraint.48

In order to describe our algorithm more clearly,

the following notations are presented under a partial 50

feasible timetable X̃:
• apdi(X̃): the total number of available periods for 52

course ci under X̃;
• apsi(X̃): the total number of available positions 54

(period-room pairs) for course ci under X̃ ;

• nli(X̃): the number of unassigned lectures of 56

course ci under X̃;
• uaci,j(X̃): the total number of lectures of unfin- 58

ished courses who become unavailable at period
tj after assigning one lecture of course ci at period 60

tj .

Under any partial feasible timetable X̃, we at- 62

tempt to choose one lecture of a course from all the
unfinished courses, i.e. having unscheduled lectures, 64

according to the following heuristic order (HR1):
(i) choose the course with the smallest value of 66

apdi(X̃)/

√
nli(X̃);

(ii) if there are multiple courses with the same 68

smallest values, then, choose the course with

the smallest value of apsi(X̃)

√
nli(X̃); 70

(iii) if there are still more than one course with the
same smallest values, then choose the course 72

with the maximum number of confi, where
confi is the number of courses that share com- 74

mon students or teacher with course ci. Ties
are broken by following the label order. 76

In this heuristic, the courses with a small num-
ber of available periods and a large number of 78

unassigned lectures have priority. The rationale for
this heuristic is the following. On the one hand, 80

one course which has a small number of available
periods naturally has fewer choices to be assigned 82

than courses having many available periods. On the
other hand, it is reasonable to give priority to the 84

course with a large number of left lectures. When
this heuristic rule cannot distinguish two or more 86

courses, the number of available positions (period-
room pairs) and the number of conflicting courses 88

are taken into account to distinguish them.
Based on a dynamic selection procedure, the pro- 90

posed course selection heuristic HR1 is similar to
(but not exactly the same as) the least Saturation 92

Degree first heuristic used in [5]. However, HR1 is
quite different from most of the previous fixed order 94

heuristics [12].
Once we have chosen one lecture of a course to 96

assign (suppose c∗i is chosen), we want to select a
period among all available ones that is least likely to 98

be used by other unfinished courses at later steps.
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To this end, we propose the following heuristic rule
(HR2) for the period-room pair assignment: for2

each available period-room pair (tj and rk), we try
to choose the pair with the smallest value of the4

following weighted function:

g(j, k) = k1 · uaci∗,j(X̃) + k2 ·∆fs(i
∗, j, k) (2)6

where ∆fs(i
∗, j, k) is the soft constraint penalties in-

curred by the feasible lecture insertion< c∗i , tj , rk >;8

k1 and k2 are the coefficients related to hard and
soft constraints, respectively. In practice, we have10

found that the following parameter values work well
over a large class of instances: k1 = 1.0, k2 = 0.5.12

In this function, uaci∗,j denotes the total number of
lectures of unfinished courses that become unavail-14

able at period tj after assigning one lecture of course
c∗i at period tj , implying the influence of the fea-16

sible lecture insertion < c∗i , tj, rk > to the period
availability of other unfinished courses. This means18

that there are uaci∗,j lectures of unfinished courses
that originally can be assigned at period tj , but will20

become impossible to assign if the feasible lecture
insertion < c∗i , tj, rk > is executed. Therefore, fea-22

sible lecture insertions with small values of uaci∗,j
are highly favored.24

Given these definitions, notations and heuristic
rules, our initial generation algorithm is described26

in algorithm 1.

Algorithm 1 Pseudo-code of the initial solution
heuristic
1: Input: I, an instance of CB-CTT
2: Output: X0, a feasible solution or a partial fea-

sible solution
3: set X̃ = null and initialize the set LC of all

unassigned lectures
4: repeat

5: choose one unassigned lecture of a course (ci)
from LC according to HR1

6: assign the lecture to a period-room pair (tj −
rk) based on HR2

7: implement the feasible lecture insertion <
ci, tj , rk > and update X̃

8: remove one lecture of course ci from LC
9: until (LC is empty or no any feasible lecture

insertion is available)

In our initial solution generator, we dynamically28

determine the order of the lecture to be assigned ac-
cording to the principle of least period availability,30

rather than using a fixed order as previous initial so-
lution heuristics of the literature [12]. Under any fea-32

sible partial timetable with some lectures assigned,
we use a heuristic function to examine every period- 34

room pair by calculating its goodness. Among all
possible period-room pairs, we select the lecture in- 36

sertion with the smallest value in equation (2), in
which the effectiveness of the proposed heuristic al- 38

lows us to take into account the soft constraints as
well. After assigning one lecture, the current partial 40

feasible timetable is updated and the values of all
possible lecture insertions are recalculated for all the 42

unassigned lectures. Such a process continues until
all the lectures are successfully assigned or the num- 44

ber of possible lecture insertions becomes zero.

5. Tabu Search Algorithm 46

In this section, we focus on the basic search en-
gine of our ATS algorithm—Tabu Search. As a well- 48

known metaheuritic that has proven to be successful
in solving various combinatorial optimization prob- 50

lems [20], Tabu Search explores the search space by
repeatedly replacing the current solutionwith a non- 52

recently visited neighboring solution even if the later
is worse than the current solution. It is based on the 54

belief that intelligent searching should be systemati-
cally based on adaptive memory and learning. Com- 56

paring with the standard local search, TS introduces
the notion of tabu list to forbid the previously vis- 58

ited moves in order to avoid possible cycling and to
allow the search to go beyond local optima. 60

Our TS procedure exploits two neighborhoods
(denoted by N1 and N2, see below) in a token-ring 62

way [18]. More precisely, we start the TS procedure
with one neighborhood. When the search ends with 64

its best local optimum, we restart TS from this
local optimum, but with the other neighborhood. 66

This process is repeated until no improvement is
possible and we say a TS phase is achieved. In our 68

case, the TS procedure begins from the basic neigh-
borhood N1 and then the advanced neighborhood 70

N2: N1→N2→N1→N2...

5.1. Search Space and Evaluation Function 72

Once a feasible timetable that satisfies all the hard
constraints is reached, our intensification phase (TS 74

algorithm) is aimed to optimize the soft constraint
cost function without breaking hard constraints any 76

more (formula (1)). Therefore, the search space of
our TS algorithm is limited to the feasible timeta- 78
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bles. The evaluation function is just the soft con-
straint violations as defined in formula (1).2

5.2. Neighborhood Structure

It is widely believed that one of the most impor-4

tant features of a local search based algorithm is the
definition of its neighborhood. In a local search pro-6

cedure, applying a move mv to a candidate solution
X leads to a new solution denoted by X

⊕
mv. Let8

M(X) be the set of all possible moves which can
be applied to X and do not create any infeasibility,10

then the neighborhood of X is defined by: N(X) =
{X

⊕
mv|mv ∈M(X)}. For the CB-CTT problem,12

we use two distinct moves denoted by SimpleSwap

and KempeSwap. Respectively, two neighborhoods14

denoted by N1 and N2 are defined as follows, where
only the moves producing those neighbors that do16

not incur any violation of the hard constraints are
accepted.18

Basic Neighborhood N1: N1 is composed of
all feasible moves of SimpleSwap. A SimpleSwap20

move consists in exchanging the hosting periods and
rooms assigned to two lectures of different courses.22

Applying the SimpleSwap move to two different
courses xi,j and xi′,j′ for the solution X consists in24

assigning the value of xi,j to xi′,j′ and inversely the
value of xi′,j′ to xi,j . Note that moving one lecture26

of a course to a free position is a special case of
the SimpleSwap move where one of the swapping28

lectures is empty and it is also included in N1.
Therefore, the size of neighborhood N1 is bounded30

by O(l ∗ p ∗m) where l =
∑n−1

i=0 li because there are
l lectures and the total number of swapping lectures32

(including free positions) is bounded by O(p ∗m).
Advanced Neighborhood N2: N2 is composed34

of all feasible moves of KempeSwap. A KempeSwap

move is defined by interchanging two Kempe chains.36

If we focus only on courses and conflicts, each prob-
lem instance can be looked as a graphGwhere nodes38

are courses and edges connect courses with students
or teacher in common. In a feasible timetable, a40

Kempe chain is the set of nodes that form a con-
nected component in the subgraph of G induced by42

the nodes that belong to two periods. AKempeSwap

produces a new feasible assignment by swapping the44

period labels assigned to the courses belonging to
two specified Kempe chains.46

Formally, let K1 and K2 be two Kempe chains in
the subgraph with respect to two periods ti and tj ,48

a KempeSwap produces an assignment by replacing

ti with (ti\(K1∪K2))∪ (tj ∩ (K1∪K2)) and tj with 50

(tj\(K1 ∪K2)) ∪ (ti ∩ (K1 ∪K2)). Note that in the
definition of N2 at least three courses are involved, 52

i.e., |K1| + |K2| ≥ 3. For instance, figure 1 depicts
a subgraph deduced by two periods ti and tj and 54

there are five Kempe chains:Ka = {ci1, ci2, cj1, cj2},
Kb = {ci5}, Kc = {cj4}, Kd = {ci3, ci6, cj3} and 56

Ke = {ci4, cj5, cj6}. In this example, each room at
periods ti and tj has one lecture. If we swap two 58

Kempe chains Kd and Ke, a KempeSwap produces
an assignment by moving {ci3, ci4, ci6} to tj and 60

{cj3, cj5, cj6} to ti.
Note that in our KempeSwap, one of the swap- 62

ping Kempe chains can be empty, i.e., we add a
new empty Kempe chain Kf = ∅. In this case, 64

the move of KempeSwap degenerates into a single
Kempe chain interchange. Formally, it means replac- 66

ing ti with (ti\K) ∪ (tj ∩K) and tj with (tj\K) ∪
(ti∩K) whereK is the non-empty Kempe chain [12]. 68

For example, in figure 1, if we exchange the courses
of the Kempe chain Ka, it produces an assignment 70

by moving {ci1, ci2} to tj and {cj1, cj2} to ti. It is
noteworthy to notice that our double Kempe chains 72

interchange can be considered as a generalization of
the single Kempe chain interchange known in the 74

literature [10,12,15,24,34].
Once courses are scheduled to periods, the room 76

assignment can be done by solving a bipartite
matching problem [27], where both heuristic and 78

exact algorithms can be employed. In this paper,
we implement an exact algorithm–the augmenting 80

path algorithm introduced in [28], which runs in
O(|V ||C|). In consideration of the high computa- 82

tional effort of this matching algorithm, we should
try to use it as few as possible. For this purpose, we 84

propose a special technique to estimate the good-
ness of a move without actually calling this match- 86

ing algorithm, as shown in subsections 5.3 and 8.2.
Since KempeSwap can be considered as an ex- 88

Fig. 1. Kempe chain illustrations
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tended version of swapping two lectures (and af-
terward several other related lectures in the speci-2

fied Kempe chain(s) being moved), the size of N2

is bounded by O(l ∗ (l + p)), where the size of dou-4

ble Kempe chains interchange is bounded by O(l∗ l)
and the size of single Kempe chain interchange is6

bounded by O(l ∗ p).
In order to maintain the feasibility of the Kempe8

chain neighborhood solution, another important
factor also needs to be considered, i.e., the num-10

ber of courses in each period (after Kempe chain
exchange) cannot exceed the number of avail-12

able rooms. For example, in figure 1, with respect
to the single Kempe chain interchange, only one14

feasible move can be produced by interchanging
courses in Ka, while other four single Kempe chain16

interchanges (Kb, Kc, Kd and Ke) cannot pro-
duce feasible solutions since these moves break the18

above-mentioned violation and thus are forbidden.
In fact, this property largely restricts the number20

of acceptable candidate solutions for single Kempe
chain interchanges. We call this restriction room22

allocation violation.
However, as soon as the double Kempe chains in-24

terchange is taken into account, the room allocation

violation is relaxed such that a large number of fea-26

sible moves can be generated. For instance, in figure
1, three double Kempe chains interchanges can be28

produced by swapping Kb and Ke, Kc and Kd as
well as Kd and Ke. In a word, the introduction of30

the double Kempe chains interchanges allows us to
consider more neighborhood moves in a flexible way32

than the previous single Kempe chain interchange.
It should be noted that our proposed neighbor-34

hoods N1 and N2 are quite different from the pre-
vious ones introduced in [11,18,19]. In their work,36

two basic neighborhood moves were defined: one is
to simply change the period assigned to a lecture of38

a given course, while the other is to change the room
assigned to a lecture of a given course. One observes40

that these two neighborhood moves are the subset
of our basic neighborhood N1. It should be men-42

tioned that except the double Kempe chains inter-
change, other moves (one lecture move, two lectures44

swap and single Kempe chain interchange) are not
completely new and have been proposed for solving46

other timetabling problems in the literature in re-
cent years [12,21]. However, we will show in Section48

8.4 that the proposed double Kempe chains move is
much more powerful.50

5.3. Incremental Evaluation and Neighborhood

Reduction 52

Our basic search procedure is based on TS, which
employs an aggressive search strategy to exploit its 54

neighborhood, i.e., at each iteration, all the candi-
date neighbors of the current solution are examined 56

and the best non-tabu one is chosen. In order to eval-
uate the neighborhood in an efficient way, we use an 58

incremental evaluation technique. The main idea is
to keep in a special data structure the move value 60

for each possible move of the current solution. Each
time a move is carried out, the elements of this data 62

structure affected by the move are updated accord-
ingly. 64

However, as mentioned above, the move evalua-
tion of the advanced neighborhood N2 needs much 66

more computational efforts than that of N1. In or-
der to save CPU time, we attempt to use the match- 68

ing algorithm as few as possible. According to the
problem formulation, the soft costs can be classi- 70

fied into the period related and room related costs.
From the definition ofN2, it is clear that the period- 72

related cost ∆fp can be calculated without calling
the matching algorithm and therefore it is easy to 74

calculate, while the calculation of the room related
cost∆fr is time consuming due to the higher compu- 76

tational cost of the matching algorithm. In our im-
plementation, we only record and update the period- 78

related move values ∆fp for the neighborhood solu-
tions of N2, while for the room-related move values, 80

a special reduction technique is employed to decide
whether to call the matching algorithm. 82

In fact, we use the period related sub cost ∆fp as
a goodness estimation of the Kempe move. Specif- 84

ically, if the period related cost ∆fp is promising
(i.e., ∆fp ≤ τ , practically τ=2 would produce com- 86

petitive results for a large class of instances), then
we call the matching algorithm to make room allo- 88

cations and obtain the total incremental evaluation
cost ∆f . Otherwise, this neighborhood candidate 90

solution will be discarded. In this way, at each iter-
ation only a small subset of the promising neighbor- 92

hood solutions are thoroughly evaluated, thus allow-
ing us to save a considerable amount of CPU time. 94

It should be noted that the successful employment
of this technique must be based on the hypothesis 96

that the period related sub cost ∆fp is proportional
to the total cost function ∆f (as shown in Section 98

8.2).
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5.4. Tabu List Management

Within TS, a tabu list is introduced to forbid the2

previously visited moves in order to escape from lo-
cal optima. At each iteration, a best non-tabu move4

mv is applied to the current solutionX even if X ′ =
X

⊕
mv does not improve the solution quality.6

In our TS algorithm, when moving one lecture
from one position (period-room pair) to another8

(N1), or from one period to another (N2), this lec-
ture cannot be moved back to the original position10

(N1) or period (N2) for the next tt iterations (tt
is called tabu tenure). More precisely, in neighbor-12

hood N1, if a lecture of a course ci is moved from
one position (tj , rk) to another one, then moving14

any one lecture of course ci to the position (tj , rk)
is declared tabu. Similarly, in neighborhood N2,16

moving one lecture of course ci to period tj is de-
clared tabu iff any lecture of course ci is moved18

from period tj to another one.
Tabu tenure tt of a course ci is tuned adaptively20

according to the current solution quality f and the
moving frequency of lectures of course ci, denoted22

by freq(ci), i.e.,

tt(ci) = f + ϕ · freq(ci)24

where ϕ is a parameter that lies in [0, 1].
The first part of this function can be explained by26

the reason that a solution with high soft cost penal-
ties should have a long tabu tenure in order to escape28

from the local optimum trap. On the other hand,
the second part of the function is proportional to the30

moving frequency of course ci. The basic idea is to
penalize a move which repeats too often. The coef-32

ficient ϕ is instance-dependent and is defined as the
ratio of the number of conflicting courses of ci over34

the total number of courses. It is reasonable that a
course involved in a large number of conflicts has36

more risk to be moved than a course having fewer
conflicts. This tabu tenure function is intended to38

explicitly guide the search to new regions of the solu-
tion space. Notice that freq(ci) is the essential part40

of the above tabu tenure function and the frequency-
based tabu tenure technique has been widely used42

in previous literature, see e.g. [35].

5.5. Aspiration Criteria and Stop condition44

Since attributes of a solution instead of solutions
themselves are recorded in tabu list, sometimes a46

candidate solution in the tabu list would lead to a

solution better than the best found so far. In this 48

case an aspiration criterion is used to accept this so-
lution regardless of its tabu status. Our aspiration 50

criterion accepts a tabu move if it improves the cur-
rent best solution or the set of non-tabu moves is 52

empty in the current neighborhood.
Many stop conditions are possible for the TS al- 54

gorithm, such as the fixed numbers of iterations, the
maximum number of iterations without improve- 56

ment in cost function and the total amount of CPU
time. Since our TS is a basic search procedure and 58

will be adaptively integrated with perturbation op-
erators, our TS algorithm stops when the best solu- 60

tion cannot be improved within a given number of
moves (denoted by θ) and we call this number the 62

depth of TS.

5.6. TS Algorithm Description 64

Given all the components of TS, the algorithm is
described in algorithm 2.

Algorithm 2 Tabu Search procedure: TS(X0,θ)

1: Input: X0:a feasible initial solution
2: θ:the depth of TS

3: Output: Xbest:best solution found so far
4: Xbest←X0

5: repeat

6: X∗←TSN1
(X0, θ)

7: X∗
′

←TSN2
(X∗, θ/3)

8: if f(X∗
′

) < f(Xbest) then
9: Xbest←X∗

′

10: X0←X∗
′

11: end if

12: until (no improvement is obtained)

66

Because of the high computational effort in evalu-
ating the moves of neighborhoodN2, TS uses a much 68

smaller depth (θ/3) when N2 is used. The TS pro-
cedure described here constitutes the basic search 70

engine of our whole ATS algorithm, where the pa-
rameter θ will be dynamically tuned according to 72

the search history (see Section 6.2).

6. Adaptive TS: Combining TS with 74

Perturbation

In recent decades, TS and ILS have alone proved 76

their efficiency for solving a large number of con-
straint satisfaction and optimization problems 78

[20,22]. In this paper, we consider the possibility of
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combining these two powerful metaheuristics in an
informative way. Following the basic idea of com-2

bining the advantageous features of TS and ILS
exposed in [25], we devise in this work an ATS algo-4

rithm for the CB-CTT problem whose components
and mechanisms are described in the following sub-6

sections.
TS can be used with both long and short com-8

puting budgets. In general, long computing budgets
would lead to better results. However, if the total10

computation time is limited, it would be preferred to
combine short TS runs with some robust diversifica-12

tion operators. Interestingly, Iterated Local Search
provides such diversification mechanisms to guide14

the search to escape from the current local optimum
and move toward new promising regions in the so-16

lution space [22].

6.1. A Penalty-Guided Perturbation Strategy18

In our case, when the best solution cannot be im-
proved any more using the TS algorithm, we employ20

a perturbation operator to destruct the obtained lo-
cal optimum solution. Perturbation strength is one22

of the most important factors of ILS. In general, if
the perturbation is too strong, it may behave like a24

random restart. On the other hand, if the perturba-
tion is too small, the search would fall back into the26

local optimum just visited and the exploration of the
search space will be limited within a small region.28

In order to not only inherit the essential parts
of the current local optimum solution obtained but30

also move towards a new region of the search space,
we employ a penalty-guided perturbation operator32

to perturb the reached local optimum solution. Our
perturbation is based on the identification of a set34

of the first q highly-penalized lectures and a random
selection of a given number of neighborhood moves36

(in this paper, we experimentally set q = 30). We
call the total number of perturbation moves pertur-38

bation strength, denoted by η.
Specifically, when the current TS phase termi-40

nates, all the lectures are ranked in a decreasing or-
der according to their soft penalties involved. Then,42

totally η lectures are selected from the first q highly-
penalized ones, where the lecture of rank k is selected44

according to the following probability distribution:

P (k) ∝ k−φ
46

where φ is a positive real number and in this paper
we empirically set φ = 4.0. After that, η feasible48

moves of SimpleSwap or KempeSwap are randomly
and sequentially produced, each involving at least 50

one of the selected η lectures.
Notice that constraining the choice to highly- 52

penalized lectures is essential because it is these
lectures that contribute strongly to constraint vi- 54

olations (and the cost function). In addition, the
most important elements of a local minimum so- 56

lution without contributing anything to the soft
constraint violations will remain unchanged, which 58

inherit the essential parts of the current local mini-
mum solution. 60

As previously mentioned, the perturbation

strength η is one of the most important ingredients 62

of ILS, which determines the quality gap between
the two solutions before and after perturbation. In 64

our case, η is adaptively adjusted and takes val-
ues in an interval [ηmin, ηmax] (set experimentally 66

ηmin = 4, ηmax = 15).

6.2. ATS and Two Self-Adaptive Mechanisms 68

Our ATS algorithm is based on an integration of
intensification (TS) and diversification (ILS’s Per- 70

turbation). Instead of just simply combining the TS
and ILS algorithms, we attempt to integrate them 72

in a more meaningful way. The depth of TS θ and
the perturbation strength η seem to be two essential 74

parameters which control the behavior of the ATS
algorithm. On the one hand, a greater θ value en- 76

sures a more intensive search. On the other hand, a
greater η corresponds to more possibilities of escap- 78

ing from the current local minimum. In order to get
a continuous tradeoff between intensification and di- 80

versification, we devise a mechanism to dynamically
and adaptively adjust these two important parame- 82

ters according to the historical search records.
At the beginning of the search, we take a basic TS 84

where the depth of TS θ is a small positive number,
say θ = 10. When TS cannot improve its best so- 86

lution, perturbation is applied to the best solution
with a weak strength (η = ηmin). When the search 88

progresses, we record the number of TS phases (de-
noted by ξ) without improvement in cost function. 90

The depth of TS θ and the perturbation strength η
are dynamically adjusted as follows: When the local 92

minimum obtained by TS is promising, i.e., when it
is close to the current best solution (f ≤ fbest + 2), 94

the depth of TS is gradually increased to ensure a
more and more intensive search until no improve- 96

ment is possible, i.e., θ = (1+µ) ·θ at each iteration
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Algorithm 3 Adaptive Tabu Search

1: Input: I: an instance of CB-CTT
2: Output: X∗: the best solution found so far
3: % Initialization: line 6-8
4: % Intensification: line 11-17
5: % Diversification: line 10,23
6: X0←feasible initial solution
7: ξ←0, θ←θ0, η←ηmin

8: X∗←TS(X0, θ)
9: repeat

10: X ′←Perturb(X∗, η)
% perturb X∗ with strength η, get X ′

11: X∗
′

←TS(X ′, θ)
12: if f(X∗

′

) ≤ f(X∗) + 2 then

13: repeat

14: θ←(1 + µ) · θ
% gradually increase the depth of TS

15: X∗
′

←TS(X∗
′

, θ)
16: until no better solution is obtained
17: end if

18: if f(X∗
′

) < f(X∗) then
19: X∗←X∗

′

% accept X∗
′

as the best solution found
20: θ←θ0, η←ηmin

21: else

22: θ←θ0, ξ←ξ + 1
23: η←max{ηmin + λ · ξ, ηmax}
24: end if

25: until (stop condition is met)

(µ=0.6). On the other hand, perturbation strength is
gradually increased so as to diversify more strongly2

the search if the number of non-improving TS phases
increases. Moreover, the search turns back to the4

basic TS before each perturbation, while the per-
turbation strength reset to ηmin as soon as a better6

solution is found.
For acceptance criterion in the perturbation pro-8

cess, we use a strong exploitation technique, i.e.,
only better solutions are accepted as the best solu-10

tion found so far.
Different stop conditions are possible for the12

whole ATS algorithm, such as the fixed number of
TS phases, the maximum number of perturbations14

without improvement in the cost function, the total
CPU time and so on. In this paper, we use two stop16

conditions as described in Section 7.
Finally, our Adaptive Tabu Search algorithm is18

described in algorithm 3.

Table 3
Features of the 14 competition instances
Instance n m p l occupancy conflicts

test1 46 12 20 207 86.25% 5.41%
test2 52 12 20 223 92.92% 5.05%
test3 56 13 20 252 96.92% 4.74%
test4 55 10 25 250 100% 4.98%

comp01 30 6 30 160 88.89% 11.49%
comp02 82 16 25 283 70.75% 7.50%
comp03 76 12 25 251 62.75% 8.33%
comp04 79 18 25 286 63.56% 5.06%
comp05 54 9 36 152 46.91% 21.10%
comp06 108 18 25 361 80.22% 5.37%
comp07 131 20 25 434 86.80% 4.46%
comp08 86 18 25 324 72.00% 4.35%
comp09 76 18 25 279 62.00% 5.75%
comp10 115 18 25 370 82.22% 5.32%
comp11 30 5 45 162 72.00% 13.10%
comp12 88 11 36 218 55.05% 14.29%
comp13 82 19 25 308 64.84% 4.76%
comp14 85 17 25 275 64.71% 7.31%

7. Experimental Results 20

7.1. Problem instances and experimental protocol

To evaluate the efficiency of our proposed ATS al- 22

gorithm, we carry out experiments on two different
data sets. The first set (4 instances) was previously 24

used in the literature for the old version of the CB-
CTT problem [18,19]. The second set (14 instances) 26

is from the Second International Timetabling Com-
petition ??. The main features of these instances 28

are listed in table 3. The last two columns denoted
by occupancy and conflicts represent the percent- 30

age of occupancy of rooms (denoted by l/(p · m))
and the density of the conflict matrix (denoted by 32

2 · ne/n · (n− 1) where ne represents the total num-
ber of edges connecting two conflicting courses), 34

respectively. Other symbols are described in table
1. Except for 2 instances, neither optimal solution 36

nor tight lower bound is known. The only avail-
able (probably very bad) lower bound is zero which 38

implies the satisfaction of all the soft constraints.
Our algorithm is programmed in C and compiled 40

using Dev C++ on a PC running Windows XP with
3.4GHz CPU and 2.0G RAM. To obtain our com- 42

putational results, each instance is solved 100 times
with different random seeds. In this paper, we use 44

two stop conditions for our ATS algorithm. The first
one is the timeout condition required by the ITC– 46

2007 competition rules. The second is the fixed num-
ber of iteration moves. 48

Note that all the following results are obtained
without tuning any parameter for different in- 50
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Table 4
Settings of important parameters
Param. Description Values or Updat-

ing

θ0 basic depth of TS 10
µ increase speed of θ 0.6
θ depth of TS θ = (1 + µ) · θ
ξ non-improvement TS phases ξ = ξ + 1
ηmin basic perturbation strength 4
ηmax strong perturbation strength 15
η perturbation strength η = max{ηmin +

λ · ξ, ηmax}
λ updating factor of η 0.3
q candidate number of perturba-

tion lectures
30

φ importance factor for pertur-
bation lecture selection

4.0

τ reduction cutoff for N2 2

stances, i.e., all the parameters used in our algo-
rithm are fixed or dynamically tuned during the2

problem solving. It is possible that better solutions
would be found by using a set of instance-dependent4

parameters. However, our aim is to design a robust
solver which is able to solve efficiently a large panel6

of instances. Table 4 gives the descriptions and set-
tings of the important parameters used in our ATS8

algorithm.

7.2. Results Using ITC–2007 Rules10

Our first experiment aims to evaluate the ATS al-
gorithm on the 4 previous instances and 14 public12

competition instances of the ITC–2007, by compar-
ing its performance with its two basic components14

(TS and ILS) and another reference algorithm in
[11]. To make the comparison as fair as possible, we16

implement the TS and ILS algorithms by reusing
the ATS algorithm as follows. We define the TS al-18

gorithm as the ATS algorithmwith its adaptive per-
turbation operator disabled. In order to give more20

search power to the TS algorithm, the depth of TS
is gradually increased until the timeout condition is22

met. The ILS algorithm is the ATS algorithm with
the tabu list disabled. All the other ingredients of24

the ATS are thus shared by the three compared algo-
rithms. The stop condition is just the timeout con-26

dition required by the ITC–2007 competition rules.
On our PC, this corresponds to 390 seconds. The28

algorithm in [11] employs a dynamic TS technique,
which uses a quite different neighborhood structure30

and whose search space also includes unfeasible as-
signments as well.32

Table 5 shows the computational results of these
four algorithms run under the ITC–2007 competi-34

Table 5
Computational results and comparison under the ITC–2007
competition stop conditions

ATS TS ILS best
in [11]

Instance fmin fave σ Iter Pert Sec fminfmin fmin

test1 224 229.5 1.8 15586 208 189 230 226 234
test2 16 17.1 1.0 35271 406 182 16 16 17
test3 74 82.9 4.1 20549 369 160 82 79 86
test4 74 89.4 6.1 37346 735 208 92 83 132

comp01 5 5.0 0.0 321 5 5 5 5 5

comp02 34 60.6 7.5 15647 545 370 55 48 75
comp03 70 86.6 6.3 8246 102 257 90 76 93
comp04 38 47.9 4.0 5684 68 124 45 41 45
comp05 298 328.5 11.7 35435 54 191 315 303 326
comp06 47 69.9 7.4 13457 245 116 58 54 62
comp07 19 28.2 5.6 15646 368 383 33 25 38
comp08 43 51.4 4.6 17404 190 380 49 47 50
comp09 99 113.2 6.9 20379 238 370 109 106 119
comp10 16 38.0 10.8 16026 160 389 23 23 27
comp11 0 0.0 0.0 236 3 3 0 0 0

comp12 320 365.0 17.5 40760 590 382 330 324 358
comp13 65 76.2 6.1 16779 182 300 71 68 77
comp14 52 62.9 6.4 24427 270 368 55 53 59

tion rules. First six columns give the results of our
ATS algorithm, showing the following performance 36

indicators: the best score (fmin), the average score
(fave) and the standard deviation (σ) over 100 inde- 38

pendent runs, as well as the total number of itera-
tion moves (Iter), the total number of perturbations 40

(Pert) and the total CPU time on our computer
needed for finding the best solution fmin (Sec). If 42

there exist multiple hits on the best solution in the
100 independent runs, the values listed in table 5 are 44

the average over these multiple best hits. The last
three columns in table 5 indicate the best results ob- 46

tained by our TS and ILS, as well as those from [11].
From table 5, one clearly observes that the ATS 48

algorithm achieves always the best results (in bold),
comparing with the other three algorithms. For the 50

instances where the four algorithms reach the same
results (comp01 and comp11 ), they concern the op- 52

timal solutions and can be reached by our ATS al-
gorithm within 5 seconds). For other instances, our 54

ATS algorithm outperforms its two main compo-
nents TS and ILS, which highlights the importance 56

of the hybrid mechanism of adaptively integrating
TS and ILS. When comparing with the reference al- 58

gorithm in [11], one finds that even the results of our
TS and ILS algorithms are better than that from 60

[11].
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Table 6
Computational results of ATS algorithm under the relaxed
stop condition

ATS
Instance fmin fave σ Iter Pert Sec

test1 224 227.2 0.5 17845 234 216
test2 16 16.0 0 32416 351 167
test3 73 76.0 2.56 40849 667 2078
test4 73 86.4 4.23 109198 2054 1678

comp01 5 5.0 0.0 321 5 5
comp02 29 50.6 8.78 768334 1032 3845
comp03 66 78.6 6.07 160909 1903 2078
comp04 35 42.3 3.53 23113 266 566
comp05 292 328.5 11.7 35435 54 191
comp06 38 56.5 8.0 216848 1527 2973
comp07 13 29.7 6.48 390912 3508 4035
comp08 39 48.8 3.75 203982 2352 3069
comp09 98 109.2 5.7 70443 909 1454
comp10 10 28.8 9.0 33971 371 838
comp11 0 0.0 0.0 247 4 3
comp12 310 328.5 11.7 742316 10392 2513
comp13 59 69.9 7.4 793989 10078 4207
comp14 52 28.2 5.6 23754 260 378

7.3. Results Using More Computing Budgets

One observes that the best solutions for some in-2

stances are reached near the timeout (390 seconds)
following the ITC–2007 rules. This might reveal the4

possibility of obtaining still better results if the rig-
orous stop condition required by ITC–2007 is re-6

laxed. Therefore, in our second experiment, we aim
to evaluate the search potential of our proposed ATS8

algorithm with a relaxed stop condition. For this
purpose, we terminate our algorithm when a fixed10

number of iteration moves (800,000) is reached. Ta-
ble 6 shows the computational results of our ATS al-12

gorithm run under this stop condition and indicates
the following information: fmin, fave, σ, Iter, Pert14

and Sec over 100 independent runs. The meaning of
all these symbols are the same as in table 5.16

From table 6, one finds that for most instances
(except two instances of the first set and three of18

the second ), better solutions are found under the
relaxed stop condition. One observes that our ATS20

algorithm improves the results obtained under the
competition timeout condition listed in table 5, in22

terms of the three criteria fmin, fave and σ. It should
be noticed that the results in bold are the best so-24

lutions we found so far and we list these results for
future comparisons.26

Given the fact that neither previous best results
nor good lower bounds are available for these in-28

stances (except for comp01 and comp11 whose lower
bounds is easy to calculate and reached by our algo-30

rithm within several seconds), it is difficult to have

an absolute assessment of these results for the mo- 32

ment. The competition results (we are one of the five
finalists of ITC–2007) would give us a more reliable 34

comparison basis, but more generally, tight lower
bounds are necessary and remain to be developed. 36

8. Analysis and Discussion

Our second aim in this paper is to analyze some 38

important features of the proposed ATS algorithm.
In this section, we attempt to answer a number of 40

important questions: Why do we combine the two
neighborhoods and in the token-ring way? What is 42

the impact of the neighborhood reduction technique
on the performance of the algorithm? How about 44

the importance of the randomized penalty-guided
perturbation strategy? Whether the new proposed 46

double Kempe chains neighborhood is a value-added
one? In this section we carry out a series of experi- 48

mental analysis and attempt to answer these ques-
tions. 50

8.1. Neighborhood Combination

One of themost important features of neighborhood- 52

based meta-heuristic is surely the definition of its
neighborhood. We propose in this paper two dif- 54

ferent neighborhoods: basic neighborhood N1 and
advanced neighborhood N2. In order to make out 56

why these two neighborhoods should be combined,
we carried out experiments to compare the perfor- 58

mance of these two neighborhoods and their differ-
ent combinations. In this paper, we study two ways 60

of neighborhood combination: neighborhood union
and token-ring search. 62

In neighborhood union (denoted by N1 ∪N2), at
each iteration the neighborhood structure includes 64

all the moves of two different neighborhoods, while
in token-ring search, one neighborhood search is ap- 66

plied to the local minimum obtained by the previous
one and this process continues until no further im- 68

provement is possible [19]. For token-ring combina-
tion, we begin the search in two ways: from N1 and 70

N2 respectively, denoted by N1→N2 and N2→N1.
Tomake the comparison as fair as possible, we em- 72

ploy a steepest descent (SD) algorithm where only
better neighborhood solutions are accepted. This 74

choice can be justified by the fact that the SD algo-
rithm is completely parameter free, and thus it al- 76

lows a direct comparison of different neighborhoods
without bias. 78
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Table 7
Average soft costs for different neighborhoods and their com-
binations

f̄

Instan. N1 N2 N1∪N2 N1→N2 N2→N1

comp01 31(0.1) 23(0.1) 18(0.2) 16(0.2) 18(0.2)
comp02 186(0.4) 143(1.8) 134(2.3) 120(1.6) 123(1.7)
comp03 210(0.4) 187(1.2) 177(2.0) 170(1.16) 173(1.3)
comp04 152(0.7) 131(3.5) 117(6.7) 105(2.9) 100(4.0)
comp05 871(0.4) 627(0.4) 566(0.5) 580(0.9) 522(1.0)
comp06 197(0.8) 162(4.7) 151(8.2) 140(3.1) 140(5.0)
comp07 190(1.2) 141(8.4) 122(15.2) 111(5.7) 115(8.0)
comp08 154(0.7) 129(3.4) 112(5.2) 105(2.5) 109(3.5)
comp09 231(0.5) 189(2.1) 182(2.1) 174(1.7) 175(2.1)
comp10 186(0.9) 147(5.3) 128(9.0) 127(3.0) 116(5.1)
comp11 11(0.1) 11(0.1) 6(0.2) 4(0.1) 5(0.2)
comp12 774(0.5) 743(0.5) 684(0.8) 667(0.6) 654(1.1)
comp13 186(0.8) 151(3.9) 134(7.6) 131(2.7) 130(3.7)
comp14 175(0.5) 156(1.3) 132(2.7) 120(1.6) 124(2.0)

We apply the SD algorithmwithN1,N2,N1∪N2,
N1→N2 and N2→N1 to solve the 14 competition2

instances. The average soft cost and CPU time (sec-
onds, in brackets) over 50 independent SD runs are4

given in table 7. Note that the average soft costs
have been rounded up and the best average soft costs6

are indicated in bold for each instance. From table
7, one clearly finds that N1→N2 and N2→N1 ob-8

tain much better results than not only the single
neighborhoods N1 and N2 but also neighborhood10

union N1 ∪N2. When comparing two different ways
of token-ring search N1→N2 and N2→N1, one ob-12

serves that they produce similar results in terms of
the solution quality. However, starting the search14

from the basic neighborhoodN1 costs less CPU time
than from the advanced neighborhood N2. These16

results encourage us to combine the two neighbor-
hoods N1 and N2 in a token-ring way in our ATS18

algorithm and starting the search from the basic
neighborhood N1.20

Moreover, we have carried out the same exper-
iments using other advanced local search methods22

(such as Tabu Search and Iterated Local Search) un-
der various stop conditions. As expected, the token-24

ring way combination ofN1 andN2 always produces
the best solutions. Meanwhile, for the two ways of26

token-ring search, starting the search from the ba-
sic neighborhood N1 costs less CPU time than from28

N2 for reaching similar solution quality.

8.2. Influence of Neighborhood Reduction30

In subsection 5.3, we presented a special reduc-
tion technique to estimate the goodness of a move32

of the advanced neighborhood N2 without actually

calling the matching algorithm. Here we show that 34

the proposed neighborhood reduction technique 1)
enables to reduce considerably the evaluation cost 36

of N2; 2) does not sacrifice the solution quality.

Fig. 2. Kempe chain neighborhood size with and without the
reduction technique

In order to verify the first assumption, we com- 38

pare the two neighborhoods with and without the
reduction technique (denoted by N∗

2 and N2 respec- 40

tively) in terms of their neighborhood size, which
determines the computational efforts for evaluating 42

the whole neighborhood solutions. Figure 2 shows
the thoroughly evaluated neighborhood size of N2 44

and N∗

2 evolving with SD local search iterations for
the largest instance comp07 (very similar results are 46

observed for other instances).
From figure 2, it is clear that with the reduction 48

technique the neighborhood size (N∗

2 ) is becoming
smaller and smaller along with the algorithm pro- 50

gressing, while the neighborhood size without reduc-
tion technique (N2) remains the same or even be- 52

comes larger during the SD algorithm. One observes
that by employing this reduction technique, at each 54

iteration only a small subset of the neighborhood so-
lutions are thoroughly evaluated and thus it allows 56

the algorithm to save considerable CPU time.
On the other hand, we attempt to investigate 58

whether the reduced neighborhood sacrifices the so-
lution quality. For this purpose, we tested the SD 60

algorithm on the 14 competition instances with and
without the reduction technique technique. Figure 62

3 presents the average soft cost of N2 and N∗

2 over
50 independent runs for each instance. It is easily 64

seen that the average soft costs with and without
the reduction technique are almost the same. This 66

means that the employment of this technique does
not sacrifice the solution quality. 68
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In order to make out why the solution quality of
the modified neighborhood N∗

2 is not sacrificed, we2

observe the distributions of the local minimum so-
lutions of the original neighborhood N2. Figure 44

shows the relationship of the period related sub-cost
∆fp with the total incremental cost ∆f during a6

SD procedure (for the same instance comp07 ). Each
point in the graph represents a local minimum solu-8

tion (x-axis denotes its period related sub cost ∆fp
and y-axis denotes its total incremental cost ∆f)10

during the SD algorithm based on N2. One can eas-
ily observe that almost all the local minimum solu-12

tions lies in the left side of the threshold line ∆fp =
2, i.e., we can use the threshold τ = 2 to cutoff the14

neighborhood without missing the majority of the
local minimum solutions. It is also interesting to ob-16

serve that the period related sub-cost ∆fp is approx-
imately proportional to the total incremental cost18

Fig. 3. Average soft cost comparison forN2 with and without
the reduction technique

Fig. 4. Relationship between the period-related sub-cost ∆fp
with the total incremental cost ∆f for N2

∆f . This is the basic reason why the period-related
sub-cost ∆fp can be used to estimate the goodness 20

of the total incremental cost ∆f .

8.3. Analysis of Penalty-Guided Perturbation 22

Strategy

In subsection 6.1, we introduced a new penalty- 24

guided perturbation strategy to destruct the current
solution when a local optimum solution is reached. 26

This strategy involves randomly selecting the highly-
penalized lectures and top rank lectures have more 28

chance to be selected. We believe that constraining
the choices to the highly-penalized lectures is essen- 30

tial for the ATS algorithm.
In fact, there exist a lot of strategies to select the 32

moved lectures and perturb the local minimum so-
lution. In order to testify the efficiency of the pro- 34

posed randomized penalty-guided perturbation ap-
proach, we compare the following three lecture se- 36

lection strategies:
a. our penalty-guided perturbation strategy pro- 38

posed in section 6.1, called randomized penalty-

guided perturbation (RPGP); 40

b. the moved lectures are always the first η (η is per-
turbation strength) highly-penalized ones, called 42

intensive penalty-guided perturbation (IPGP);
c. the moved lectures are randomly selected from all 44

the lectures, called random perturbation (RP).

Fig. 5. Average soft costs for perturbation strategies RPGP,
IPGP and RS

Keeping other ingredients unchanged in our ATS 46

algorithm, we tested the above three lecture se-
lection strategies with the 14 instances under the 48

competition timeout stop condition. Figure 5 shows
the average soft costs of these three strategies over 50

50 independent runs. One can easily find that the

15



randomized and intensive penalty-guided strategies
outperforms the random strategy, which highlights2

the importance of the penalty-guided perturbation
strategy. In addition, the randomized penalty-4

guided strategy (RPGP) is also slightly better
than the intensive penalty-guided strategy (IPGP),6

which implies that always restricting moved lec-
tures to the highest penalized ones is too intensive8

such that the search may fall easily into a previous
local optimum.10

On the other hand, from the computational re-
sults of TS and ILS reported in table 5, we can12

clearly find that ILS with the penalty-guided strat-
egy even outperforms TS (without perturbation) for14

almost all the 14 instances. This convinces us again
that constraining the choice to highly-penalized lec-16

tures is essential because it is these lectures that
contribute strongly to constraint violations (and the18

cost function). Meanwhile, we should also notice
that the random selection strategy makes our per-20

turbation strategy much more flexible than the in-
tensive penalty-guided strategy.22

8.4. Interests of the Double Kempe Chains Move

In subsection 5.2, we have proposed a new neigh-24

borhood move–double Kempe chains interchange,
where two connected components of a subgraph con-26

cerning two periods are involved. In order to eval-
uate whether the newly proposed double Kempe28

chains move is a value-added one, our experiment
is carried out to evaluate the search capability of30

this neighborhood move, compared with three other
previously proposed ones. For this purpose, we re-32

define four neighborhoods as follows, each of which
concerns only one kind of move.34

Neighborhood N
(a)
1 : N

(a)
1 is defined as all the

feasible moves of OneMove. EachOneMove consists36

of moving one lecture from one position to another
free position.38

Neighborhood N
(b)
1 : N

(b)
1 is defined as all the

feasible moves of TwoSwap. Each TwoSwap move40

consists in exchanging the hosting periods and
rooms assigned to two lectures of different courses.42

Note that TwoSwap move does not include any
move of OneMove.44

Neighborhood N
(a)
2 : N

(a)
2 is defined as all the

feasible moves of SingleKChain. Each SingleKChain46

move consists in exchanging the hosting periods as-
signed to the lectures in a single Kempe chain con-48

cerning two distinct periods, see subsection 5.2.

Table 8
Average soft costs for N

(a)
1 to N

(b)
2 over 50 independent runs

f̄

Instan. N
(a)
1 N

(b)
1 N

(a)
2 N

(b)
2 N2

comp01 42(0.0) 33(0.1) 49(0.0) 24(0.1) 23(0.1)
comp02 194(0.4) 228(0.2) 204(0.4) 143(1.4) 143(1.8)
comp03 217(0.4) 248(0.2) 245(0.3) 193(1.1) 187(1.2)
comp04 153(0.7) 199(0.4) 194(0.6) 132(3.5) 131(3.5)
comp05 1016(0.3) 995(0.2) 847(0.8) 684(0.4) 627(0.4)
comp06 207(0.7) 260(0.4) 255(0.7) 158(4.6) 162(4.7)
comp07 203(1.1) 247(0.6) 230(1.3) 140(8.2) 141(8.4)
comp08 154(0.7) 205(0.3) 185(0.6) 139(3.2) 129(3.4)
comp09 238(0.4) 273(0.2) 244(0.4) 193(2.0) 189(2.1)
comp10 195(0.8) 250(0.4) 249(0.9) 145(5.1) 147(5.3)
comp11 16(0.1) 16(0.1) 25(0.0) 9(0.1) 11(0.1)
comp12 807(0.5) 874(0.3) 885(1.6) 746(0.5) 743(0.5)
comp13 197(0.7) 233(0.4) 224(0.7) 151(3.7) 151(3.9)
comp14 180(0.5) 213(0.2) 206(0.3) 151(1.2) 156(1.3)

Neighborhood N
(b)
2 : N

(b)
2 is defined as all 50

the feasible moves of DoubleKChain. Each Dou-

bleKChain move consists in exchanging the hosting 52

periods assigned to the lectures in two distinct
Kempe chains concerning two distinct periods, 54

see subsection 5.2. It should be noticed that Dou-

bleKChain here does not include any move of Sin- 56

gleKChain, i.e., none of the two Kempe chains can
be empty. 58

Note that except DoubleKChain move, the first
three moves have been proposed in the previous lit- 60

erature [12]. It is easy to see that our neighbor-
hoods N1 and N2 defined in subsection 5.2 are the 62

neighborhood union of these four neighborhoods,

i.e., N1 = N
(a)
1 ∪N

(b)
1 , N2 = N

(a)
2 ∪N

(b)
2 . 64

Table 8 shows the average cost functions for the

SD algorithm based on N
(a)
1 ∼N

(b)
2 over 50 indepen- 66

dent runs. The averaged running times are given in
parenthesis. From table 8, it is observed that the new 68

proposed double Kempe chain neighborhood N
(b)
2

dominates the other three neighborhoods in terms 70

of the solution quality, but needs more CPU time
than others. However, we believe that its power to 72

find high quality solutions deserves the additional
CPU cost. 74

When comparingwith the results of neighborhood
N2 (given in the last column and taken from table 76

7), one can easily find that neighborhood N
(b)
2 and

N2 obtains quite similar results in terms of both so- 78

lution quality and CPU time. Note that their results
are much better than that of the single Kempe chain 80

neighborhood N
(a)
2 , which emphasizes the impor-

tance of the proposed double Kempe chain move. 82

We have to mention that the same experiments
have also been carried out on our TS, ILS and ATS 84
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algorithms. As was expected, the double Kempe
chains move always obtains the best results in2

terms of solution quality. This further highlights
the interest of the new DoubleKChain move.4

9. Conclusions

To conclude, we have provided a mathemati-6

cal formulation of the university curriculum-based
course timetabling problem and presented a hybrid8

heuristic approach (Adaptive Tabu Search, ATS)
to solving this difficult problem. The proposed ATS10

algorithm follows a general framework composed
of three phases: initialization, intensification and12

diversification.
The proposed algorithm integrates a number of14

original features. First, we have proposed a new
greedy heuristic for quickly producing initial feasi-16

ble solutions. Second, we have introduced the double
Kempe chains neighborhood structure for the CB-18

CTT problem and a special technique for reducing
the size of this time-consuming yet effective neigh-20

borhood. Third, we proposed a randomized penalty-
guided perturbation strategy to perturb current so-22

lution when TS reaches the local optimum solution.
Last but not least, for the purpose of providing the24

search with a continuous tradeoff between intensifi-
cation and diversification, we have proposed a mech-26

anism for adaptively adjusting the depth of TS and
perturbation strength.28

We have assessed the performance of the proposed
ATS algorithm on two sets of 18 problem instances.30

For these instances, we showed the advantageous
merits of the proposed algorithm over TS and ILS32

alone, as well as another reference algorithm. We
also present the best solutions found so far when the34

competition stop condition is relaxed. These results
are reported for future comparisons. Tight lower36

bounds would have allowed a finer assessment, un-
fortunately, such bounds are not unavailable yet.38

Given the various constraints and the complexity of
the problem, it is expected that tight lower bounds40

can be obtained only by advanced technique, which
constitutes naturally another interesting search op-42

portunity.
Our second contribution in this paper is to inves-44

tigate several essential parts of our proposed algo-
rithm. We first carried out experiments to demon-46

strate that a token-ring way of combination is ap-
propriate for the two different neighborhoods N148

and N2. In addition, the effectiveness of the Kempe

chain neighborhood reduction technique is carefully 50

verified. Also, we have demonstrated that our ran-
domized penalty-guided perturbation strategy is es- 52

sential for our ATS algorithm. Finally, we carried
out experiments to show that the proposed double 54

Kempe chains move outperforms three other previ-
ous ones in the literature. 56

Let us comment that although the focus of this
work is to propose a particular algorithm developed 58

for solving a course timetabling problem, the basic
ideas and fundamentals are quite general and would 60

be applicable to other similar problems. At the same
time, it should be clear that for a given problem, 62

it is indispensable to realize specific adaptations by
taking into account problem-specific knowledges in 64

order to obtain an effective algorithm.
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search, Handbook of Meta-heuristics, Springer-Verlag,
Berlin Heidelberg, 2003.50

[23] B. McCollum, A perspective on bridging the gap
between theory and practice in university timetabling,52

in: Proceedings of the 6th PATAT Conference, Brno,
Czech Republic, 2006.54

[24] L. T. G. Merlot, N. Boland, B. D. Hughes, et al.,
A hybrid algorithm for the examination timetabling56

problem, in: E. K. Burke, P. D. Causmaecker (eds.),
Proceedings of the 4th PATAT Conference, Lecture58

Notes in Computer Science 2740, Springer-Verlag, 2003.

[25] A. Misevicius, A. Lenkevicius, D. Rubliauskas, Iterated60

tabu search: an improvement to standard tabu search,

Information Technology and Control 35(3) (2006) 187– 62

197.
[26] A. R. Mushi, Tabu search heuristic for university course 64

timetabling problem, African Journal of Science and
Technology 7(1) (2006) 34–40. 66

[27] C. H. Papadimitriou, K. Steiglitz, Combinatorial

Optimization: Algorithms and Complexity, Prentice- 68

Hall, Inc., 1982.
[28] O. Rossi-Doria, B. Paechter, C. Blum, et al., A local 70

search for the timetabling problem, in: Proceedings of
the 4th PATAT Conference, 2002. 72

[29] R. Santiago-Mozos, S. Salcedo-Sanz, M. DePrado-
Cumplido, et al., A two-phase heuristic evolutionary 74

algorithm for personalizing course timetables: a case
study in a spanish university, Computers and Operations 76

Research 32 (2005) 1761–1776.
[30] A. Schaerf, Tabu search techniques for large high-school 78

timetabling problems, in: Proceedings of the Thirteenth
National Conference on Artificial Intelligence, AAAI 80

Press/MIT Press, 1996.
[31] A. Schaerf, A survey of automated timetabling, Artificial 82

Intelligence Review 13(2) (1998) 87–127.
[32] J. A. M. Schreuder, Constructing timetables for sport 84

competitions, Mathematical Programming Study 13
(1980) 58–67. 86

[33] M. J. F. Souza, N. Maculan, L. S. Ochi, A GRASP-
tabu search algorithm for solving school timetabling 88

problems, Applied Optimization
Metaheuristics: Computer Decision-Making, Kluwer 90

Academic Publishers, Norwell, MA, USA, 2004, pp. 659–
672. 92

[34] J. Thompson, K. Dowsland, A robust simulated
annealing based examination timetabling system, 94

Computer and Operations Research 25 (1998) 637–648.
[35] M. Vasquez, J. K. Hao, A logic-constrained knapsack 96

formulation and a tabu algorithm for the daily
photograph scheduling of an earth observation satellite, 98

Computational Optimization and Applications 20(2)
(2001) 137–157. 100

[36] G. M. White, B. S. Xie, S. Zonjic, Using tabu
search with longer-term memory and relaxation to 102

create examination timetables, European Journal of
Operational Research 153(16) (2004) 80–91. 104

18


